Publications by authors named "Roberto Gonzalez Rodriguez"

Encapsulating CsPbBr quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated CsPbBr ellipsoidal nanocrystals and pseudo-spherical quantum dots in silicon nano-sheets and their enhanced photoluminescence (PL). For a sample with low concentrations of quantum dots in silicon nano-sheets, the emission from CsPbBr pseudo-spherical quantum dots is quenched and is dominated with Pb ion/silicene emission, which is very stable during the whole measurement period.

View Article and Find Full Text PDF

Due to high tissue penetration depth and low autofluorescence backgrounds, near-infrared (NIR) fluorescence imaging has recently become an advantageous diagnostic technique used in a variety of fields. However, most of the NIR fluorophores do not have therapeutic delivery capabilities, exhibit low photostabilities, and raise toxicity concerns. To address these issues, we developed and tested five types of biocompatible graphene quantum dots (GQDs) exhibiting spectrally-separated fluorescence in the NIR range of 928-1053 nm with NIR excitation.

View Article and Find Full Text PDF

Very recently, the synthesis of 2D MoS and WS through pulsed laser-directed thermolysis can achieve wafer-scale and large-area structures, in ambient conditions. In this paper, we report the synthesis of MoS and MoS oxides from (NH)MoS film using a visible continuous-wave (CW) laser at 532 nm, instead of the infrared pulsed laser for the laser-directed thermolysis. The (NH)MoS film is prepared by dissolving its crystal powder in DI water, sonicating the solution, and dip-coating onto a glass slide.

View Article and Find Full Text PDF

CRISPR-Cas9 is a programmable gene editing tool with a promising potential for cancer gene therapy. This therapeutic function is enabled in the present work via the non-covalent delivery of CRISPR ribonucleic protein (RNP) by cationic glucosamine/PEI-derived graphene quantum dots (PEI-GQD) that aid in overcoming physiological barriers and tracking genes of interest. PEI-GQD/RNP complex targeting the TP53 mutation overexpressed in ~50% of cancers successfully produces its double-stranded breaks in solution and in PC3 prostate cancer cells.

View Article and Find Full Text PDF

Organic-inorganic perovskites hold great promise as optoelectronic semiconductors for pure color light emitting and photovoltaic devices. However, challenges persist regarding their photostability and chemical stability, which limit their extensive applications. This paper investigates the laser radiation hardening and self-healing-induced properties of aged MAPbBr perovskites encapsulated in NiO nanotubes (MAPbBr@NiO) using photoluminescence (PL) and fluorescence lifetime imaging (FLIM).

View Article and Find Full Text PDF

Oxidative stress is proven to be a leading factor in a multitude of adverse conditions, from Alzheimer's disease to cancer. Thus, developing effective radical scavenging agents to eliminate reactive oxygen species (ROS) driving many oxidative processes has become critical. In addition to conventional antioxidants, nanoscale structures and metal-organic complexes have recently shown promising potential for radical scavenging.

View Article and Find Full Text PDF

While small interfering RNA (siRNA) technology has become a powerful tool that can enable cancer-specific gene therapy, its translation to the clinic is still hampered by the inability of the genes alone to cell transfection, poor siRNA stability in blood, and the lack of delivery tracking capabilities. Recently, graphene quantum dots (GQDs) have emerged as a novel platform allowing targeted drug delivery and fluorescence image tracking in visible and near-infrared regions. These capabilities can aid in overcoming primary obstacles to siRNA therapeutics.

View Article and Find Full Text PDF

Graphene-based materials have been the subject of interest for photothermal therapy due to their high light-to-heat conversion efficiency. Based on recent studies, graphene quantum dots (GQDs) are expected to possess advantageous photothermal properties and facilitate fluorescence image-tracking in the visible and near-infrared (NIR), while surpassing other graphene-based materials in their biocompatibility. Several GQD structures including reduced graphene quantum dots (RGQDs) derived from reduced graphene oxide via top-down oxidation and hyaluronic acid graphene quantum dots (HGQDs) hydrothermally bottom-up synthesized from molecular hyaluronic acid were employed to test these capabilities in the present work.

View Article and Find Full Text PDF

Sonography offers many advantages over standard methods of diagnostic imaging due to its non-invasiveness, substantial tissue penetration depth, and low cost. The benefits of ultrasound imaging call for the development of ultrasound-trackable drug delivery vehicles that can address a variety of therapeutic targets. One disadvantage of the technique is the lack of high-precision imaging, which can be circumvented by complementing ultrasound contrast agents with visible and, especially, near-infrared (NIR) fluorophores.

View Article and Find Full Text PDF

Early-stage pancreatic cancer remains challenging to detect, leading to a poor five-year patient survival rate. This obstacle necessitates the development of early detection approaches based on novel technologies and materials. In this work, the presence of a specific pancreatic cancer-derived miRNA (pre-miR-132) is detected using the fluorescence properties of biocompatible nitrogen-doped graphene quantum dots (NGQDs) synthesized using a bottom-up approach from a single glucosamine precursor.

View Article and Find Full Text PDF

Metal halide perovskites have emerged as the next generation of light emitting semiconducting materials due to their excellent properties such as tunable bandgaps, high photoluminescence quantum yield, and high color purity. Nickel oxide is a hole transport material that has been used in planar light emitting diodes (LEDs). In this paper, we develop a novel method for the large scale fabrication of metal halide perovskite nanowire arrays encapsulated inside nickel oxide nanotubes.

View Article and Find Full Text PDF

Silicon telluride (SiTe) has emerged as one of the many contenders for 2D materials ideal for the fabrication of atomically thin devices. Despite the progress which has been made in the electric and optical properties of silicon telluride, much work is still needed to better understand this material. We report here on the Raman study of SiTedegradation under both annealing andheating with a laser.

View Article and Find Full Text PDF
Article Synopsis
  • - The study creates a new anticancer nanoformulation called Fc-GQD-HA that combines biocompatible nitrogen-doped graphene quantum dots with a cancer-targeting hyaluronic acid and a cancer-fighting ferrocene therapeutic.
  • - The graphene quantum dots offer strong intrinsic fluorescence for tracking the formulation in lab tests, showing better internalization in cancer cells compared to non-cancer cells.
  • - The Fc-GQD-HA formulation is non-toxic to normal cells but effectively kills cancer cells over time, generating three times more reactive oxygen species than the ferrocene alone, proving its targeted delivery and cancer treatment capabilities.
View Article and Find Full Text PDF

Near-infrared (NIR) fluorescence provides a new avenue for biomedical fluorescence imaging that allows for the tracking of fluorophore through several centimeters of biological tissue. However, such fluorophores are rare and, due to accumulation-derived toxicity, are often restricted from clinical applications. Deep tissue imaging not only provided by near-infrared fluorophores but also conventionally carried out by magnetic resonance imaging (MRI) or computed tomography (CT) is also hampered by the toxicity of the contrast agents.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are unique derivatives of graphene that show promise in multiple biomedical applications as biosensors, bioimaging agents, and drug/gene delivery vehicles. Their ease in functionalization, biocompatibility, and intrinsic fluorescence enable those modalities. However, GQDs lack deep tissue magnetic resonance imaging (MRI) capabilities desirable for diagnostics.

View Article and Find Full Text PDF

While extensively investigated in thin film form for energy materials applications, this work investigates the formation of APbBr3 structures (A = CH3NH3+ (MA), Cs+) in silicon and oxidized silicon nanotubes (SiNTs) with varying inner diameter. We carefully control the extent of oxidation of the nanotube host and correlate the relative Si/Si oxide content in a given nanotube host with the photoluminescence quantum efficiency (PLQE) of the perovskite. Complementing these measurements is an evaluation of average PL lifetimes of a given APbBr3 nanostructure, as evaluated by time-resolved confocal photoluminescence measurements.

View Article and Find Full Text PDF

Although conventional antibiotics have evolved as a staple of modern medicine, increasing antibiotic resistance and the lack of antibiotic efficacy against new bacterial threats is becoming a major medical threat. In this work, we employ single-walled carbon nanotubes (SWCNTs) known to deliver and track therapeutics in mammalian cells via intrinsic near-infrared fluorescence as carriers enhancing antibacterial delivery of doxycycline and methicillin. SWCNTs dispersed in water by antibiotics without the use of toxic bile salt surfactants facilitate efficacy enhancement for both antibiotics against strain showing minimal sensitivity to methicillin.

View Article and Find Full Text PDF

Silicon nanotubes (SiNTs) with unique well-defined structural morphologies have been successfully fabricated and recognized as a novel architecture in the nanoscale Si family. While the typical dendritic microstructure of mesoporous silicon prepared anodically has been exploited previously for therapeutics and biosensing, our status of utilizing SiNTs in this regard is still in its infancy. In this review, we focus on the fundamental properties of such nanotubes relevant to therapeutic applications, beginning with a description of our ability to sensitively tune the structure of a given SiNT through synthetic control and the associated detailed in vitro dissolution behavior (reflecting biodegradability).

View Article and Find Full Text PDF

Nitrogen-doped graphene quantum dots (NGQDs) synthesized from a single glucosamine precursor are utilized to develop a novel UV photodetector. Optical properties of NGQDs can be altered with short- (254 nm), mid- (302 nm), and long-wave (365 nm) ultraviolet (UV) exposure leading to the reduction of absorption from deep to mid UV (200-320 nm) and enhancement above 320 nm. Significant quenching of blue and near-IR fluorescence accompanied by the dramatic increase of green/yellow emission of UV-treated NGQDs can be used as a potential UV-sensing mechanism.

View Article and Find Full Text PDF

Despite significant advances of nanomedicine, the issues of biocompatibility, accumulation-derived toxicity, and the lack of sensing and in vivo imaging capabilities hamper the translation of most nanocarriers into clinic. To address this, we utilize nitrogen, boron/nitrogen, and sulfur-doped graphene quantum dots (GQDs) as fully biocompatible multifunctional platforms allowing for multicolor visible/near-IR imaging and cancer-sensing. These GQDs are scalably produced in one-step synthesis from a single biocompatible glucosamine precursor, are water-soluble, show no cytotoxicity at high concentrations of 1 mg/mL, and demonstrate substantial degradation at 36 h in biological environments as verified by TEM imaging.

View Article and Find Full Text PDF

Graphene Oxide (GO) has recently attracted substantial attention in biomedical field as an effective platform for biological sensing, tissue scaffolds and in vitro fluorescence imaging. However, the targeting modality and the capability of its in vivo detection have not been explored. To enhance the functionality of GO, we combine it with superparamagnetic iron oxide nanoparticles (Fe3O4 NPs) serving as a biocompatible magnetic drug delivery addends and magnetic resonance contrast agent for MRI.

View Article and Find Full Text PDF

This article describes the preparation and fundamental properties of a new possible material as a magnetic resonance imaging contrast agent based on the incorporation of preformed iron oxide (FeO) nanocrystals into hollow silicon nanotubes (Si NTs). Specifically, superparamagnetic FeO nanoparticles of two different average sizes (5 nm and 8 nm) were loaded into Si NTs of two different shell thicknesses (40 nm and 70 nm). To achieve proper aqueous solubility, the NTs were functionalized with an outer polyethylene glycol-diacid (600) moiety via an aminopropyl linkage.

View Article and Find Full Text PDF

An astute modification of the plectin-1-targeting peptide KTLLPTP by introducing a C-terminal cysteine preceded by a tyrosine residue imparted a reducing property to the peptide. This novel property is then exploited to fabricate gold nanoparticles (GNP) via an in situ reduction of gold(iii) chloride in a one-pot, green synthesis. The modified peptide KTLLPTPYC also acts as a template to generate highly monodispersed, spherical GNPs with a narrow size distribution and improved stability.

View Article and Find Full Text PDF

Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties.

View Article and Find Full Text PDF

The cytocompatibility, cell membrane affinity, and plasmid DNA delivery from surface oxidized, metal-assisted stain-etched mesoporous silicon nanoscale particles (pSiNPs) to human embryonic kidney (HEK293) cells is demonstrated, suggesting the possibility of using such material for targeted transfection and drug delivery.

View Article and Find Full Text PDF