Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds of primary importance in the field of organic semiconductors, with applications in both organic electronics and photovoltaics. This paper delves into two strictly related topics. First, the theoretical rationalization of the physical factors underlying the emergence of the polaron "giant-response infrared active vibrations (IRAVs)" signature in positively charged PAHs.
View Article and Find Full Text PDFCharge transfer (CT) crystals exhibit unique electronic and magnetic properties with interesting applications. We present a rational and easy guide which allows to foresee the effective charge transfer co-crystal production and that is based on the comparison of the frontier molecular orbital (MO) energies of a donor and acceptor couple. For the sake of comparison, theoretical calculations have been carried out by using the cheap and fast PM6 semiempirical Hamiltonian and pure HF/cc-pVTZ level of the theory.
View Article and Find Full Text PDFThis research investigates the difference between products obtained through two hydrothermal carbonization treatments. Our aim is to synthesize metal-free, carbon-based catalysts for the oxygen reduction reaction (ORR) to serve as efficient and cost-effective alternatives to platinum-based catalysts. Catalysts synthesized using the traditional hydrothermal approach exhibit a higher electrocatalytic activity for ORR in alkaline media, despite their more energy-intensive production process.
View Article and Find Full Text PDFThis paper studies the mechanism of electrochemically induced carbon-bromine dissociation in 1-Br-2-methylnaphalene in the reduction regime. In particular, the bond dissociation of the relevant radical anion is disassembled at a molecular level, exploiting quantum mechanical calculations including steady-state, equilibrium and dissociation dynamics via dynamic reaction coordinate (DRC) calculations. DRC is a molecular-dynamic-based calculation relying on an ab initio potential surface.
View Article and Find Full Text PDFThe present work is focused on a novel approach for the study and quantification of some of the physical changes to which a fingermark deposited on non-porous substrates is subjected as its ageing proceeds. Particularly, electrochemical impedance spectroscopy (EIS) technique has been applied for the first time in order to monitor the electrochemical behaviour of the system constituted by the fingermark residue and the underlying substrate. The impedance spectra proved to be significantly affected by the presence of the mark residue as well as by its ageing process.
View Article and Find Full Text PDFSurface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated.
View Article and Find Full Text PDF