Publications by authors named "Roberto Gianni-Barrera"

Article Synopsis
  • People with type-2 diabetes can have serious skin wounds that don’t heal well because of poor blood flow, even if their larger blood vessels are fine.
  • To help these wounds heal, doctors can encourage blood flow by creating new connections in the skin’s blood vessels, a process called arteriogenesis.
  • Researchers found that using special gels with proteins that help blood vessel growth can speed up healing in diabetic mice better than traditional treatments.
View Article and Find Full Text PDF

Non-healing ulcers are a serious complication of diabetes mellitus and a major unmet medical need. A major cause for the lack of healing is the impairment of spontaneous vascularization in the skin, despite mostly normal blood flow in deeper large vessels. Therefore, pro-angiogenic treatments are needed to increase therapeutic perfusion by recruiting new arterial connections (therapeutic arteriogenesis).

View Article and Find Full Text PDF

Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype.

View Article and Find Full Text PDF

Therapeutic angiogenesis, that is, the generation of new vessels by delivery of specific factors, is required both for rapid vascularization of tissue-engineered constructs and to treat ischemic conditions. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis. However, uncontrolled expression can lead to aberrant vascular growth and vascular tumors (angiomas).

View Article and Find Full Text PDF

Vascularization is a critical step in the restoration of cellular homeostasis. Several strategies including localized growth factor delivery, endothelial progenitor cells, genetically engineered cells, gene therapy, and prevascularized implants have been explored to promote revascularization. But, long-term stabilization of newly induced vessels remains a challenge.

View Article and Find Full Text PDF

Despite major advances in medical, catheter-based or surgical treatment, cardiovascular diseases such as peripheral artery disease and coronary artery disease still cause significant morbidity and mortality. Furthermore, many patients do not qualify for catheter-based treatment or bypass surgery because of advanced disease or surgical risk. There is therefore an urgent need for novel treatment strategies.

View Article and Find Full Text PDF

The myoblast-mediated delivery of angiogenic genes represents a cell-based approach for targeted induction of therapeutic collateralization. Here, we tested the superiority of myoblast-mediated co-delivery of vascular endothelial growth factor-A (VEGF) together with platelet-derived growth factor-BB (PDGF-BB) on transpial collateralization of an indirect encephalomyosynangiosis (EMS) in a model of chronic cerebral ischemia. Mouse myoblasts expressing a reporter gene alone (empty vector), VEGF, PDGF-BB or VEGF and PDGF-BB through a single bi-cistronic vector (VIP) were implanted into the temporalis muscle of an EMS following permanent ipsilateral internal carotid artery occlusion in adult, male C57BL/6N mice.

View Article and Find Full Text PDF
Article Synopsis
  • Vascular endothelial growth factor (VEGF) regulates angiogenesis primarily through sprouting, but its application in ischemic muscle results in intussusception, an alternative process where blood vessels split.
  • Researchers have identified ephrinB2/EphB4 signaling as a critical player in this intussusceptive angiogenesis, influencing how blood vessels expand and form capillary networks under varying VEGF doses.
  • The study highlights that EphB4 fine-tunes VEGF's effects without blocking its action and points to its potential as a therapeutic target for improving vascular growth in muscle tissue.
View Article and Find Full Text PDF

A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.

View Article and Find Full Text PDF

Therapeutic angiogenesis by growth factor delivery is an attractive treatment strategy for ischemic diseases, yet clinical efficacy has been elusive. The angiogenic master regulator VEGF-A can induce aberrant angiogenesis if expressed above a threshold level. Since VEGF remains localized in the matrix around expressing cells, homogeneous dose distribution in target tissues is required, which is challenging.

View Article and Find Full Text PDF
Article Synopsis
  • VEGF plays a crucial role in therapeutic angiogenesis, but its effectiveness is compromised by the need for short-term delivery due to safety concerns, leading to unstable new blood vessels.
  • Research using transduced myoblasts in SCID mouse muscles revealed that low doses of VEGF promote faster vessel stabilization, while high doses delay it, without affecting pericyte coverage.
  • The study found that high VEGF levels inhibit endothelial Semaphorin3A expression, disrupting the recruitment of specific monocytes necessary for vessel stabilization, but Semaphorin3A treatment can counteract this effect even with high VEGF doses.
View Article and Find Full Text PDF

Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery.

View Article and Find Full Text PDF

Therapeutic angiogenesis is an attractive strategy to treat patients suffering from ischaemic conditions and vascular endothelial growth factor-A (VEGF) is the master regulator of blood vessel growth. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose localized in the microenvironment around each producing cell in vivo and on the balanced stimulation of platelet-derived growth factor-BB (PDGF-BB) signalling, responsible for pericyte recruitment. At the doses required to induce therapeutic benefit, VEGF causes new vascular growth essentially without sprouting, but rather through the alternative process of intussusception, or vascular splitting.

View Article and Find Full Text PDF

Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis.

View Article and Find Full Text PDF

Therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery is an attractive approach to treat ischemia. VEGF remains localized around each producing cell in vivo, and overexpression of mouse VEGF(164) (mVEGF(164)) induces normal or aberrant angiogenesis, depending strictly on its dose in the microenvironment in vivo. However, the dose-dependent effects of the clinically relevant factor, human VEGF(165) (hVEGF(165)), are unknown.

View Article and Find Full Text PDF

Therapeutic over-expression of vascular endothelial growth factor (VEGF) can be used to treat ischemic conditions. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo, which limits its clinical usefulness. The goal herein was to determine the cellular mechanisms by which physiologic and aberrant vessels are induced by over-expression of different VEGF doses in adult skeletal muscle.

View Article and Find Full Text PDF

Therapeutic angiogenesis by delivery of vascular growth factors is an attractive strategy for treating debilitating occlusive vascular diseases, yet clinical trials have thus far failed to show efficacy. As a result, limb amputation remains a common outcome for muscle ischemia due to severe atherosclerotic disease, with an overall incidence of 100 per million people in the United States per year. A challenge has been that the angiogenic master regulator vascular endothelial growth factor (VEGF) induces dysfunctional vessels, if expressed outside of a narrow dosage window.

View Article and Find Full Text PDF

VEGF (vascular endothelial growth factor) is the master regulator of blood vessel growth. However, it displayed substantial limitations when delivered as a single gene to restore blood flow in ischaemic conditions. Indeed, uncontrolled VEGF expression can easily induce aberrant vascular structures, and short-term expression leads to unstable vessels.

View Article and Find Full Text PDF

Therapeutic angiogenesis is an attractive strategy to treat patients suffering from peripheral or coronary artery disease. VEGF (vascular endothelial growth factor-A) is the fundamental factor controlling vascular growth in both development and postnatal life. The interplay between the VEGF and Notch signalling pathway has been recently found to regulate the morphogenic events leading to the growth of new vessels by sprouting.

View Article and Find Full Text PDF

We recently developed a method to control the in vivo distribution of vascular endothelial growth factor (VEGF) by high throughput Fluorescence-Activated Cell Sorting (FACS) purification of transduced progenitors such that they homogeneously express specific VEGF levels. Here we investigated the long-term safety of this method in chronic hind limb ischemia in nude rats. Primary myoblasts were transduced to co-express rat VEGF-A(164) (rVEGF) and truncated ratCD8a, the latter serving as a FACS-quantifiable surface marker.

View Article and Find Full Text PDF

Delivery of therapeutic genes by genetically modified progenitors is a powerful tool for regenerative medicine. However, many proteins remain localized within or around the expressing cell, and heterogeneous expression levels can lead to reduced efficacy or increased toxicity. For example, the matrix-binding vascular endothelial growth factor (VEGF) can induce normal, stable, and functional angiogenesis or aberrant angioma growth depending on its level of expression in the microenvironment around each producing cell, and not on its total dose.

View Article and Find Full Text PDF

We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically.

View Article and Find Full Text PDF

Objective: T-cadherin (T-cad) is an atypical GPI-anchored member of the cadherin superfamily. In vascular tissue, T-cad expression is increased during atherosclerosis, restenosis, and tumor neovascularization. In vitro, overexpression and/or homophilic ligation of T-cad on endothelial cells (ECs) facilitates migration, proliferation, and survival.

View Article and Find Full Text PDF

The pulmonary adenoma susceptibility 1 (Pas1) locus affects inherited predisposition and resistance to chemically induced lung tumorigenesis in mice. The A/J and C57BL/6J mouse strains carry the susceptibility and resistance allele, respectively. We identified and genotyped 65 polymorphisms in the Pas1 locus region in 29 mouse inbred strains, and delimited the Pas1 locus to a minimal region of 468 kb containing six genes.

View Article and Find Full Text PDF