Purpose: Antimalarial drug resistance is a global public health problem that leads to treatment failure. Synergistic drug combinations can improve treatment outcomes and delay the development of drug resistance. Here, we describe the implementation of a freely available computational tool, Machine Learning Synergy Predictor (MLSyPred©), to predict potential synergy in antimalarial drug combinations.
View Article and Find Full Text PDFGenes (Basel)
September 2023
Cardiovascular disease (CVD) is one of the leading causes of death in Puerto Rico, where clopidogrel is commonly prescribed to prevent ischemic events. Genetic contributors to both a poor clopidogrel response and the severity of CVD have been identified mainly in Europeans. However, the non-random enrichment of single-nucleotide polymorphisms (SNPs) associated with clopidogrel resistance within risk loci linked to underlying CVDs, and the role of admixture, have yet to be tested.
View Article and Find Full Text PDFNon-Hispanic whites present with higher atrial fibrillation (AF) prevalence than other racial minorities living in the mainland USA. In two hospital-based studies, Puerto Rican Hispanics had a lower prevalence of atrial fibrillation of 2.5% than non-Hispanic Whites with 5.
View Article and Find Full Text PDFBackground: Transcatheter mitral valve repair (TMVR) utilization has increased significantly in the United States over the last years. Yet, a risk-prediction tool for adverse events has not been developed. We aimed to generate a machine-learning-based algorithm to predict in-hospital mortality after TMVR.
View Article and Find Full Text PDFDespite some previous examples of successful application to the field of pharmacogenomics, the utility of machine learning (ML) techniques for warfarin dose predictions in Caribbean Hispanic patients has yet to be fully evaluated. This study compares seven ML methods to predict warfarin dosing in Caribbean Hispanics. This is a secondary analysis of genetic and non-genetic clinical data from 190 cardiovascular Hispanic patients.
View Article and Find Full Text PDFObjectives: This study sought to develop and compare an array of machine learning methods to predict in-hospital mortality after transcatheter aortic valve replacement (TAVR) in the United States.
Background: Existing risk prediction tools for in-hospital complications in patients undergoing TAVR have been designed using statistical modeling approaches and have certain limitations.
Methods: Patient data were obtained from the National Inpatient Sample database from 2012 to 2015.