Autism spectrum disorder (ASD) is a heterogeneous condition, characterized by complex genetic architectures and intertwined genetic/environmental interactions. Novel analysis approaches to disentangle its pathophysiology by computing large amounts of data are needed. We present an advanced machine learning technique, based on a clustering analysis on genotypical/phenotypical embedding spaces, to identify biological processes that might act as pathophysiological substrates for ASD.
View Article and Find Full Text PDFGenome sequencing has identified a large number of putative autism spectrum disorder (ASD) risk genes, revealing possible disrupted biological pathways; however, the genetic and environmental underpinnings of ASD remain mostly unanswered. The presented methodology aimed to identify genetically related clusters of ASD individuals. By using the VariCarta dataset, which contains data retrieved from 13,069 people with ASD, we compared patients pairwise to build "patient similarity matrices".
View Article and Find Full Text PDF