Publications by authors named "Roberto Dale"

Given two unidirectionally coupled nonlinear systems, we speak of generalized synchronization when the responder "follows" the driver. Mathematically, this situation is implemented by a map from the driver state space to the responder state space termed the synchronization map. In nonlinear times series analysis, the framework of the present work, the existence of the synchronization map amounts to the invertibility of the so-called cross map, which is a continuous map that exists in the reconstructed state spaces for typical time-delay embeddings.

View Article and Find Full Text PDF

This is a review of group entropy and its application to permutation complexity. Specifically, we revisit a new approach to the notion of complexity in the time series analysis based on both permutation entropy and group entropy. As a result, the permutation entropy rate can be extended from deterministic dynamics to random processes.

View Article and Find Full Text PDF

Permutation entropy measures the complexity of a deterministic time series via a data symbolic quantization consisting of rank vectors called ordinal patterns or simply permutations. Reasons for the increasing popularity of this entropy in time series analysis include that (i) it converges to the Kolmogorov-Sinai entropy of the underlying dynamics in the limit of ever longer permutations and (ii) its computation dispenses with generating and ad hoc partitions. However, permutation entropy diverges when the number of allowed permutations grows super-exponentially with their length, as happens when time series are output by dynamical systems with observational or dynamical noise or purely random processes.

View Article and Find Full Text PDF