Publications by authors named "Roberto D Rivarola"

Whether it is in radiobiology to identify DNA lesions or in medicine to adapt the radiotherapeutic protocols, a detailed understanding of the radiation-induced interactions in living matter is required. Monte Carlo track-structure codes have been successfully developed to describe these interactions and predict the radiation-induced energy deposits at the nanoscale level in the medium of interest. In this work, the quantum-mechanically based Monte Carlo track-structure code TILDA-V has been used to compute the slowing-down of protons in water and DNA.

View Article and Find Full Text PDF

Purpose: Although DNA lesions are considered of prime importance for describing the post-irradiation cellular survival, they still remain rarely studied on both experimental and theoretical sides. Under these conditions, we here propose different theoretical models for predicting the single ionization and single capture total cross sections for DNA bases impacted by protons.

Material And Methods: Three theoretical approaches are developed: a first classical one based on a classical trajectory Monte Carlo (CTMC) model and two quantum mechanical ones, namely, a Coulomb Born (CB1) and a continuum-distorted wave eikonal-initial-state (CDW-EIS) model.

View Article and Find Full Text PDF