In this study, a new micro delivery system based on an anionic methacrylate copolymer, able to improve the biological response of myo-inositol by daily oral administration, was manufactured by spray-drying. It has an ideal dose form for oral administration, with an experimental drug loading (DL)% of 14% and a regulated particle size of less than 15 µm. The new formulation features an improvement on traditional formulations used as a chronic therapy for the treatment of polycystic ovary syndrome.
View Article and Find Full Text PDFIn the present study, gastro-resistant microparticles (MPs) were produced using the spray-drying technique as controlled-release systems for some model liposoluble vitamins, including retinyl-palmitate, retinyl-acetate, β-carotene, cholecalciferol and α-tocopherol. The gastroprotective action of three different gastro-resistant excipients, the anionic methacrylic copolymer (Eudraguard Biotic, E1207), the cellulose acetate phthalate (CAP) and whey proteins (WPs), was compared. The latter was used to produce a novel delivery system manufactured with only food-derived components, such as milk, and showed several improvements over the two synthetic gastro-resistant agents.
View Article and Find Full Text PDFPurpose: Solid dispersions (SDs) represent the most common formulation technique used to increase the dissolution rate of a drug. In this work, the three most common methods used to prepare SDs, namely spray-drying, solvent-casting and freeze-drying, have been compared in order to investigate their effect on increasing drug dissolution rate.
Methods: Three formulation strategies were used to prepare a polymer mixture of polyvinyl-alcohol (PVA) and maltodextrin (MDX) as SDs loaded with the following three model drugs, all of which possess a poor solubility: Olanzapine, Dexamethasone, and Triamcinolone acetonide.