Publications by authors named "Roberto Cadeddu"

Article Synopsis
  • Researchers are looking for new treatments for Tourette syndrome (TS) because current medicines don't work well and can have bad side effects.
  • They experimented with a special drug called xanomeline on mice that have TS-like behaviors to see if it could help reduce tics.
  • The results showed that xanomeline was effective, especially by targeting certain receptors in the brain, suggesting it could be a new way to treat TS in humans.
View Article and Find Full Text PDF

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present.

View Article and Find Full Text PDF

Background: Self-grooming behavior in rodents serves as a valuable behavioral index for investigating stereotyped and perseverative responses. Most current grooming analyses rely on video observation, which lacks standardization, efficiency, and quantitative information about force. To address these limitations, we developed an automated paradigm to analyze grooming using a force-plate actometer.

View Article and Find Full Text PDF

Background: Self-grooming behavior in rodents serves as a valuable model for investigating stereotyped and perseverative responses. Most current grooming analyses primarily rely on video observation, which lacks standardization, efficiency, and quantitative information about force. To address these limitations, we developed an automated paradigm to analyze grooming using a force-plate actometer.

View Article and Find Full Text PDF

Ample evidence suggests that acute stress can worsen symptom severity in Tourette syndrome (TS); however, the neurobiological underpinnings of this phenomenon remain poorly understood. We previously showed that acute stress exacerbates tic-like and other TS-associated responses via the neurosteroid allopregnanolone (AP) in an animal model of repetitive behavioral pathology. To verify the relevance of this mechanism to tic pathophysiology, here we tested the effects of AP in a mouse model recapitulating the partial depletion of dorsolateral cholinergic interneurons (CINs) seen in post-mortem studies of TS.

View Article and Find Full Text PDF

Rationale: The prepulse inhibition (PPI) of the startle reflex is the best-established index of sensorimotor gating. We documented that the neurosteroid allopregnanolone (AP) is necessary to reduce PPI in response to D dopamine receptor agonists. Since Sprague-Dawley (SD) rats are poorly sensitive to the PPI-disrupting effects of these drugs, we hypothesized that AP might increase this susceptibility.

View Article and Find Full Text PDF

Ample evidence indicates that environmental stress impairs information processing, yet the underlying mechanisms remain partially elusive. We showed that, in several rodent models of psychopathology, the neurosteroid allopregnanolone (AP) reduces the prepulse inhibition (PPI) of the startle, a well-validated index of sensorimotor gating. Since this GABA receptor activator is synthesized in response to acute stress, we hypothesized its participation in stress-induced PPI deficits.

View Article and Find Full Text PDF

In a program to identify pain treatments with low addiction potential, we isolated five steroids, conosteroids A-E (-), from the hypobranchial gland of the mollusk . Compounds - were active in a mouse dorsal root ganglion (DRG) assay that suggested that they might be analgesic. A synthetic analogue was used for a detailed pharmacological study.

View Article and Find Full Text PDF

Opioid use disorder (OUD) has become a leading cause of death in the United States, yet current therapeutic strategies remain highly inadequate. To identify potential treatments for OUD, we screened a targeted selection of over 100 drugs using a recently developed opioid self-administration assay in zebrafish. This paradigm showed that finasteride, a steroidogenesis inhibitor approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia, reduced self-administration of multiple opioids without affecting locomotion or feeding behavior.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a disabling neurodevelopmental disorder characterized by multiple, recurrent tics. The pharmacological treatment of TS is currently based on dopaminergic antagonists; however, these drugs are associated with extrapyramidal symptoms and other serious adverse events. Recent evidence suggests that positive allosteric modulators (PAMs) of GABA receptors containing α6 subunits (α6 GABARs) oppose the behavioral effects of dopamine.

View Article and Find Full Text PDF

Finasteride (FIN) is the prototypical inhibitor of steroid 5α-reductase (5αR), the enzyme that catalyzes the rate-limiting step of the conversion of progesterone and testosterone into their main neuroactive metabolites. FIN is clinically approved for the treatment of benign prostatic hyperplasia and male baldness; while often well-tolerated, FIN has also been shown to cause or exacerbate psychological problems in vulnerable subjects. Evidence on the psychological effects of FIN, however, remains controversial, in view of inconsistent clinical reports.

View Article and Find Full Text PDF

Background And Purpose: We previously demonstrated that paracetamol has to be metabolised in the brain by fatty acid amide hydrolase enzyme into AM404 (N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide) to activate CB receptors and TRPV1 channels, which mediate its analgesic effect. However, the brain mechanisms supporting paracetamol-induced analgesia remain unknown.

Experimental Approach: The effects of paracetamol on brain function in Sprague-Dawley rats were determined by functional MRI.

View Article and Find Full Text PDF

Introduction: The extraction of salient information from the environment is modulated by the activation of dopamine receptors. Using rodent models, we previously reported that gating deficits caused by dopamine receptor activation - as measured by the prepulse inhibition (PPI) of startle - are effectively opposed by inhibitors of the steroidogenic enzyme 5α-reductase (5αR). The specific 5αR isoenzyme and steroids implicated in these effects, however, remain unknown.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a neuropsychiatric disorder characterised by multiple, persistent tics. These semi-voluntary motor and phonic manifestations are typically aggravated by exposure to acute stress, yet the mechanisms underlying this exacerbation remain unclear. Using a well-characterised animal model of TS, the D1CT-7 mouse, we recently showed that acute stress increases tic-like responses and causes sensorimotor gating deficits, as measured by the prepulse inhibition of the startle.

View Article and Find Full Text PDF

Since the therapeutic treatment of depression is far from being satisfactory, new therapeutic strategies ought to be pursued. In addition, further investigation on brain areas involved in the action mechanism of antidepressants can shed light on the aetiology of depression. We have previously reported that typical and atypical antidepressants strongly stimulate catecholamine transmission in the bed nucleus of stria terminalis (BNST).

View Article and Find Full Text PDF

Rationale: Antidepressants include a relatively wide spectrum of drugs that increase the synaptic concentration of monoamines, mostly through neurotransmitter reuptake blockade. The bed nucleus of stria teminalis (BNST) is considered a relay station in mediating the activation of stress response but also in the acquisition and expression of emotions. BNST is richly innervated by monoamines and sends back projections to the nucleus of origin.

View Article and Find Full Text PDF

Rationale: Disulfiram efficacy in treatment of cocaine addiction is attributed to the inhibition of dopamine-β-hydroxylase and reduction in brain noradrenaline (NA)/dopamine (DA) ratio.

Objectives: Using microdialysis, we investigated if disulfiram causes DA release from noradrenergic terminals and modifies cocaine-induced DA release.

Results: Disulfiram reduced extracellular NA in the medial prefrontal (mPF) cortex, occipital cortex, accumbens and caudate nuclei, while it markedly increased DA not only in mPF but also in the occipital cortex, despite its scanty dopaminergic afferences, and modestly increased DA in the accumbens and caudate nuclei, despite their dense dopaminergic innervation.

View Article and Find Full Text PDF

Rats deprived of social contact with other rats at a young age experience a form of prolonged stress that leads to long-lasting changes in behavioral profile. Such isolation is thought to be anxiogenic for these normally gregarious animals, and the abnormal reactivity of isolated rats to environmental stimuli is thought to be a product of prolonged stress. We now show that isolation of rats at weaning reduced immobility time in the forced swim test, decreased sucrose intake and preference, and down-regulated both brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeletal associated protein (Arc) in the hippocampus.

View Article and Find Full Text PDF