Publications by authors named "Roberto C Sotero"

Background: Alzheimer's Disease (AD) poses a major challenge as a neurodegenerative disorder, and early detection is critical for effective intervention. Magnetic resonance imaging (MRI) is a critical tool in AD research due to its availability and cost-effectiveness in clinical settings.

Objective: This study aims to conduct a comprehensive analysis of machine learning (ML) methods for MRI-based biomarker selection and classification to investigate early cognitive decline in AD.

View Article and Find Full Text PDF

Brain imaging with a high-spatiotemporal resolution is crucial for accurate brain-function mapping. Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are two popular neuroimaging modalities with complementary features that record brain function with high temporal and spatial resolution, respectively. One popular non-invasive way to obtain data with both high spatial and temporal resolutions is to combine the fMRI activation map and EEG data to improve the spatial resolution of the EEG source localization.

View Article and Find Full Text PDF

State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations.

View Article and Find Full Text PDF

Simultaneous EEG-fMRI is a growing and promising field, as it has great potential to further our understanding of the spatiotemporal dynamics of brain function in health and disease. In particular, there is much interest in understanding the fMRI correlates of brain activity in the gamma band (> 30 Hz), as these frequencies are thought to be associated with cognitive processes involving perception, attention, and memory, as well as with disorders such as schizophrenia and autism. However, progress in this area has been limited due to issues such as MR-induced artifacts in EEG recordings, which seem to be more problematic for gamma frequencies.

View Article and Find Full Text PDF

Modulation of the amplitude of high-frequency cortical field activity locked to changes in the phase of a slower brain rhythm is known as phase-amplitude coupling (PAC). The study of this phenomenon has been gaining traction in neuroscience because of several reports on its appearance in normal and pathological brain processes in humans as well as across different mammalian species. This has led to the suggestion that PAC may be an intrinsic brain process that facilitates brain inter-area communication across different spatiotemporal scales.

View Article and Find Full Text PDF

The identification of community structure in graphs continues to attract great interest in several fields. Network neuroscience is particularly concerned with this problem considering the key roles communities play in brain processes and functionality. Most methods used for community detection in brain graphs are based on the maximization of a parameter-dependent modularity function that often obscures the physical meaning and hierarchical organization of the partitions of network nodes.

View Article and Find Full Text PDF

The complexity of brain activity has been observed at many spatial scales and has been proposed to differentiate between mental states and disorders. Here we introduced a new measure of (global) network complexity, constructed as the sum of the complexities of its nodes (i.e.

View Article and Find Full Text PDF

With the release of the multi-site Autism Brain Imaging Data Exchange, many researchers have applied machine learning methods to distinguish between healthy subjects and autistic individuals by using features extracted from resting state functional MRI data. An important part of applying machine learning to this problem is extracting these features. Specifically, whether to include negative correlations between brain region activities as relevant features and how best to define these features.

View Article and Find Full Text PDF

Resting-state functional connectivity MRI (rs-fcMRI) is a common method for mapping functional brain networks. However, estimation of these networks is affected by the presence of a common global systemic noise, or global signal (GS). Previous studies have shown that the common preprocessing steps of removing the GS may create spurious correlations between brain regions.

View Article and Find Full Text PDF

Automatic algorithms for disease diagnosis are being thoroughly researched for use in clinical settings. They usually rely on pre-identified biomarkers to highlight the existence of certain problems. However, finding such biomarkers for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) has challenged researchers for many years.

View Article and Find Full Text PDF

Here we demonstrate the suitability of a local mutual information measure for estimating the temporal dynamics of cross-frequency coupling (CFC) in brain electrophysiological signals. In CFC, concurrent activity streams in different frequency ranges interact and transiently couple. A particular form of CFC, phase-amplitude coupling (PAC), has raised interest given the growing amount of evidence of its possible role in healthy and pathological brain information processing.

View Article and Find Full Text PDF

Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer's disease (AD), having promising clinical benefit. However, all individuals with the same condition currently receive identical brain stimulation, with limited theoretical basis for this generic approach. In this study, we introduce a control theory framework for obtaining exogenous signals that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while reflecting patients' biological variability.

View Article and Find Full Text PDF

Structural connectivity (SC) of white matter (WM) and functional connectivity (FC) of cortical regions undergo changes in normal aging. As WM tracts form the underlying anatomical architecture that connects regions within resting state networks (RSNs), it is intuitive to expect that SC and FC changes with age are correlated. Studies that investigated the relationship between SC and FC in normal aging are rare, and have mainly compared between groups of elderly and younger subjects.

View Article and Find Full Text PDF

Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions.

View Article and Find Full Text PDF

Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important indicator of information transmission in the brain. However, the neurobiological mechanisms underlying its generation remain undetermined. A realistic, yet tractable computational model of the phenomenon is thus needed.

View Article and Find Full Text PDF

Although resting-state functional connectivity is a commonly used neuroimaging paradigm, the underlying mechanisms remain unknown. Thalamo-cortical and cortico-cortical circuits generate oscillations at different frequencies during spontaneous activity. However, it remains unclear how the various rhythms interact and whether their interactions are lamina-specific.

View Article and Find Full Text PDF

Phase-amplitude coupling (PAC), the phenomenon where the amplitude of a high frequency oscillation is modulated by the phase of a lower frequency oscillation, is attracting an increasing interest in the neuroscience community due to its potential relevance for understanding healthy and pathological information processing in the brain. PAC is a diverse phenomenon, having been experimentally detected in at least ten combinations of rhythms: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. However, a complete understanding of the biophysical mechanisms generating this diversity is lacking.

View Article and Find Full Text PDF

Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized.

View Article and Find Full Text PDF

Several studies posit energy as a constraint on the coding and processing of information in the brain due to the high cost of resting and evoked cortical activity. This suggestion has been addressed theoretically with models of a single neuron and two coupled neurons. Neural mass models (NMMs) address mean-field based modeling of the activity and interactions between populations of neurons rather than a few neurons.

View Article and Find Full Text PDF

A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel.

View Article and Find Full Text PDF

We propose a neural mass model for anatomically-constrained effective connectivity among neuronal populations residing in four layers (L2/3, L4, L5 and L6) within a cortical column. Eight neuronal populations in a given column--an excitatory population and an inhibitory population per layer--are assumed to be coupled via effective connections of unknown strengths that need to be estimated. The effective connections are constrained to anatomical connections that have been shown to exist in previous anatomical studies.

View Article and Find Full Text PDF

Our goal is to model the behavior of an ensemble of interacting neurons and astrocytes (the neural-glial mass). For this, a model describing N tripartite synapses is proposed. Each tripartite synapse consists of presynaptic and postsynaptic nerve terminals, as well as the synaptically associated astrocytic microdomain, and is described by a system of 13 stochastic differential equations.

View Article and Find Full Text PDF

Electrophysiological (EEG/MEG) imaging challenges statistics by providing two views of the same underlying spatio-temporal brain activity: a topographic view (EEG/MEG) and tomographic view (EEG/MEG source reconstructions). It is a common practice that statistical parametric mapping (SPM) for these two situations is developed separately. In particular, assessing statistical significance of functional connectivity is a major challenge in these types of studies.

View Article and Find Full Text PDF

This article reviews progress and challenges in model driven EEG/fMRI fusion with a focus on brain oscillations. Fusion is the combination of both imaging modalities based on a cascade of forward models from ensemble of post-synaptic potentials (ePSP) to net primary current densities (nPCD) to EEG; and from ePSP to vasomotor feed forward signal (VFFSS) to BOLD. In absence of a model, data driven fusion creates maps of correlations between EEG and BOLD or between estimates of nPCD and VFFS.

View Article and Find Full Text PDF