The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.
View Article and Find Full Text PDFSoft X-ray microscopy coupled with low energy X-ray fluorescence is a powerful tool for investigating complex biological systems like cells and tissues. Due to certain characteristics of X-ray sources, sample stage motors, and detectors, the examination of large areas at high resolutions is very time consuming, often confining the analysis only to a restricted number of pre-selected representative regions. Here we propose and demonstrate a compressive sensing method that provides an alternative approach for overcoming such limitations and can be applied to different kinds of samples and other microscopy and analytical techniques.
View Article and Find Full Text PDFX-Ray Fluorescence (XRF) scanning is a widespread technique of high importance and impact since it provides chemical composition maps crucial for several scientific investigations. There are continuous requirements for larger, faster and highly resolved acquisitions in order to study complex structures. Among the scientific applications that benefit from it, some of them, such as wide scale brain imaging, are prohibitively difficult due to time constraints.
View Article and Find Full Text PDFThe recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties.
View Article and Find Full Text PDFAttosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field.
View Article and Find Full Text PDFThe recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state.
View Article and Find Full Text PDFThe Elastic and Inelastic Scattering (EIS) beamline at the free-electron laser FERMI is presented. It consists of two separate end-stations: EIS-TIMEX, dedicated to ultrafast time-resolved studies of matter under extreme and metastable conditions, and EIS-TIMER, dedicated to time-resolved spectroscopy of mesoscopic dynamics in condensed matter. The scientific objectives are discussed and the instrument layout illustrated, together with the results from first exemplifying experiments.
View Article and Find Full Text PDF