Publications by authors named "Roberto Berni"

HCV infection poses a global health threat, with significant morbidity and mortality. This study examines HCV trends in a large Italian region from 2015 to 2022, considering demographic changes, evolving clinical profiles, treatment regimens and outcomes, including the impact of the COVID-19 pandemic. This multicentre retrospective study analysed demographics, clinical histories and risk factors in 6882 HCV patients.

View Article and Find Full Text PDF

Climate change results in exceptional environmental conditions and drives the migration of pathogens to which local plants are not adapted. Biotic stress disrupts plants' metabolism, fitness, and performance, ultimately impacting their productivity. It is therefore necessary to develop strategies for improving plant resistance by promoting stress responsiveness and resilience in an environmentally friendly and sustainable way.

View Article and Find Full Text PDF
Article Synopsis
  • Apple russeting is caused by suberin accumulation in response to cuticle damage, and research is ongoing to understand the regulatory mechanisms behind this process, particularly focusing on MYB transcription factors.* -
  • The study validated the function of the MdMYB68 transcription factor through experiments in Nicotiana benthamiana, including RNA-Seq and lipid quantification, revealing that it triggers the entire suberin biosynthesis pathway.* -
  • Findings indicate that MdMYB68 not only boosts suberin deposition but also significantly alters carbohydrate components in the cell wall, suggesting its role in regulating both aliphatic and aromatic suberin deposition in apple fruit.*
View Article and Find Full Text PDF

Brodifacoum is the most common rodenticide used for the eradication of invasive rodents from islands. It blocks the vitamin K cycle, resulting in hemorrhages in target mammals. Non-target species may be incidentally exposed to brodifacoum, including marine species.

View Article and Find Full Text PDF

Our previous studies, comparing russeted vs. waxy apple skin, highlighted a MYeloBlastosys (Myb) transcription factor (MdMYB52), which displayed a correlation with genes associated to the suberization process. The present article aims to assess its role and function in the suberization process.

View Article and Find Full Text PDF

In the last decade, the exploration of deep space has become the objective of the national space programs of many countries. The International Space Exploration Coordination Group has set a roadmap whose long-range strategy envisions the expansion of human presence in the solar system to progress with exploration and knowledge and to accelerate innovation. Crewed missions to Mars could be envisaged by 2040.

View Article and Find Full Text PDF

Callogenesis, the process during which explants derived from differentiated plant tissues are subjected to a trans-differentiation step characterized by the proliferation of a mass of cells, is fundamental to indirect organogenesis and the establishment of cell suspension cultures. Therefore, understanding how callogenesis takes place is helpful to plant tissue culture, as well as to plant biotechnology and bioprocess engineering. The common herbaceous plant stinging nettle ( L.

View Article and Find Full Text PDF

The remarkable desiccation tolerance of the vegetative tissues in the resurrection species (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media.

View Article and Find Full Text PDF

Salinity is a form of abiotic stress that impacts growth and development in several economically relevant crops and is a top-ranking threat to agriculture, considering the average rise in the sea level caused by global warming. Tomato is moderately sensitive to salinity and shows adaptive mechanisms to this abiotic stressor. A case study on the dwarf tomato model Micro-Tom is here presented in which the response to salt stress (NaCl 200 mM) was investigated to shed light on the changes occurring at the expression level in genes involved in cell wall-related processes, phenylpropanoid pathway, stress response, volatiles' emission and secondary metabolites' production.

View Article and Find Full Text PDF

Carbon nanosheets are two-dimensional nanostructured materials that have applications as energy storage devices, electrochemical sensors, sample supports, filtration membranes, thanks to their high porosity and surface area. Here, for the first time, carbon nanosheets have been prepared from the stems and leaves of a nettle fibre clone, by using a cheap and straight-forward procedure that can be easily scaled up. The nanomaterial shows interesting physical parameters, namely interconnectivity of pores, graphitization, surface area and pore width.

View Article and Find Full Text PDF

Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained.

View Article and Find Full Text PDF

Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods.

View Article and Find Full Text PDF

Global warming and sea level rise are serious threats to agriculture. The negative effects caused by severe salinity include discoloration and reduced surface of the leaves, as well as wilting due to an impaired uptake of water from the soil by roots. Nanotechnology is emerging as a valuable ally in agriculture: several studies have indeed already proven the role of silicon nanoparticles in ameliorating the conditions of plants subjected to (a) biotic stressors.

View Article and Find Full Text PDF

Sweet cherry (Prunus avium L.) is a stone fruit widely consumed and appreciated for its organoleptic properties, as well as its nutraceutical potential. We here investigated the characteristics of six non-commercial Tuscan varieties of sweet cherry maintained at the Regional Germplasm Bank of the CNR-IBE in Follonica (Italy) and sampled ca.

View Article and Find Full Text PDF

Salinity is an abiotic stress that affects agriculture by severely impacting crop growth and, consequently, final yield. Considering that sea levels rise at an alarming rate of >3 mm per year, it is clear that salt stress constitutes a top-ranking threat to agriculture. Among the economically important crops that are sensitive to high salinity is tomato ( L.

View Article and Find Full Text PDF

Callose is an important biopolymer of β-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains.

View Article and Find Full Text PDF

Silicon, a quasi-essential element for plants, improves vigour and resilience under stress. Recently, studies on textile hemp (Cannabis sativa L.) showed its genetic predisposition to uptake silicic acid and accumulate it as silica in epidermal leaf cells and trichomes.

View Article and Find Full Text PDF

Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.

View Article and Find Full Text PDF

Stinging nettle ( L.) produces silky cellulosic fibres, as well as bioactive molecules. To improve the knowledge on nettle and enhance its opportunities of exploitation, a draft transcriptome of the "clone 13" (a fibre clone) is here presented.

View Article and Find Full Text PDF

Sweet cherries are non-climacteric fruits whose early development is characterized by high levels of the phytohormone jasmonic acid (JA). Important parameters, such as firmness and susceptibility to cracking, can be affected by pre- and postharvest treatments of sweet cherries with JA. Despite the impact of JA on sweet cherry development and fruit characteristics, there are no studies (to the best of our knowledge) identifying the genes involved in the JA biosynthetic pathway in this species.

View Article and Find Full Text PDF

The potential of six ancient Tuscan sweet cherry ( L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (s) and three cytochrome P450s (s) that are putatively involved in the triterpene production pathway in sweet cherries.

View Article and Find Full Text PDF

Laccase-like multicopper oxidases (LMCOs) are versatile enzymes used as biocatalysts performing the oxidation of different substrates of industrial relevance, with or without the intervention of a mediator. They have attracted a lot of interest for biotechnological applications in light of their eco-friendliness: they indeed oxidize the substrate(s) by coupling the four electron reduction of the final acceptor, molecular oxygen (O), to water. Plant LMCOs represent a still poorly studied, important class of oxidoreductases controlling e.

View Article and Find Full Text PDF

A diet rich in fruits and vegetables contributes to lowering the risk of chronic diseases. The fruits of Malus x domestica are a rich dietary source of bioactive compounds, namely vitamins and antioxidants, with recognized action on human health protection. Tuscany is known for its rich plant biodiversity, especially represented by ancient varieties of fruit trees.

View Article and Find Full Text PDF

The human diet is characterized by highly energetic molecules, but it also requires non-energetic compounds that are equally useful for cell functioning and for preserving the organism's health status. These "functional" molecules are represented by a wide variety of plant secondary metabolites, such as terpenoids, vitamins and polyphenols with antioxidant power. Widespread commercial crop varieties often contain scarce levels of functional molecules, because they have been mostly selected for productivity, rather than for the content of secondary metabolites.

View Article and Find Full Text PDF

Cherries are known for their nutraceutical properties, in particular for their antioxidant ability due to their polyphenol content, which causes a reduction of cardiovascular disease (CVD) risk factors. However, once ingested these molecules are degraded in the Gastrointestinal (GI) tract before reaching the blood, which is the action site. The object of the present work is to evaluate the ability of cherry extract (CE), encapsulated in nanoparticles (NPs) based on different chitosan (Ch) derivatives, to promote a protective effect of human umbilical vein endothelial cells (HUVECs) involved in vascular dysfunction against oxidative stress.

View Article and Find Full Text PDF