Publications by authors named "Roberto Benech Arnold"

Understanding how the environment regulates seed-bank dormancy changes is essential for forecasting seedling emergence in actual and future climatic scenarios, and to interpret studies of dormancy mechanisms at physiological and molecular levels. Here, we used a population threshold modelling approach to analyse dormancy changes through variations in the thermal range permissive for germination in buried seeds of Arabidopsis thaliana Cvi, a winter annual ecotype. Results showed that changes in dormancy level were mainly associated with variations in the higher limit of the thermal range permissive for germination.

View Article and Find Full Text PDF

The timing of emergence of weed species has critical ecological and agronomical implications. In several species, emergence patterns largely depend on the level of dormancy of the seedbank, which is modulated by specific environmental factors. In addition, environmental conditions during seed maturation on the mother plant can have marked effects on the dormancy level at the time of seed dispersal.

View Article and Find Full Text PDF

Seedling emergence in the field is strongly related to the dynamics of dormancy release and induction of the seed bank, which is mainly regulated by soil temperature. However, there is limited information on how temperature-driven effects on dormancy changes are modulated by the seed hydration-level. We investigated the effect of seed water content (SWC) on the dormancy release and dormancy induction in Polygonum aviculare L.

View Article and Find Full Text PDF

Polygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms.

View Article and Find Full Text PDF

Agricultural practices exert selective forces on weed populations. As these practices change over time, weed adaptive traits also evolve, allowing weeds to persist in the new environment. However, only weeds having individuals showing the trait with adaptive significance will be able to cope with these changes, thus allowing a sub-population to be selected for persistence.

View Article and Find Full Text PDF

Emergence at an appropriate time and place is critical for maximizing plant fitness and hence sophisticated mechanisms such as seed dormancy have evolved. Although maternal influence on different aspects of dormancy behavior has been identified, its impact under field conditions and its relation to plant fitness has not been fully determined. This study examined maternal effects in Polygonum aviculare on release of seed primary dormancy, responses to alternating temperatures, induction into secondary dormancy, and field emergence patterns as influenced by changes in the sowing date and photoperiod experienced by the mother plant.

View Article and Find Full Text PDF

The possibility of obtaining sorghum grains with quality to match the standards for a diversity of end-uses is frequently hampered by the susceptibility to pre-harvest sprouting (PHS) displayed by many elite genotypes. For these reasons, obtaining resistance to PHS is considered in sorghum breeding programs, particularly when the crop is expected to approach harvest maturity under rainy or damp conditions prevalence. As in other cereals, the primary cause for sprouting susceptibility is a low dormancy prior to crop harvest; in consequence, most research has focused in understanding the mechanisms through which the duration of dormancy is differentially controlled in genotypes with contrasting sprouting behavior.

View Article and Find Full Text PDF

Seeds integrate environmental cues that modulate their dormancy and germination. Although many mechanisms have been identified in laboratory experiments, their contribution to germination dynamics in existing communities and their involvement in defining species habitats remain elusive. By coupling mathematical models with ecological data we investigated the contribution of seed temperature responses to the dynamics of germination of three Nothofagus species that are sharply distributed across different altitudes in the Patagonian Andes.

View Article and Find Full Text PDF

The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS).

View Article and Find Full Text PDF

Transcriptional co-activators of the multiprotein bridging factor 1 (MBF1) controls gene expression by connecting transcription factors and the basal transcription machinery. In Arabidopsis thaliana functions of MBF1 genes have been related to stress tolerance and developmental alterations. Endogenous ABA plays a major role in the regulation of Arabidopsis seed dormancy and germination.

View Article and Find Full Text PDF

Grain sorghum [Sorghum bicolor (L) moench] exhibits intraspecific variability for the rate of dormancy release and pre-harvest sprouting behavior. Two inbred lines with contrasting sprouting response were compared: IS9530 (resistant) and RedlandB2 (susceptible). Precocious dormancy release in RedlandB2 is related to an early loss of embryo sensitivity to ABA and higher levels of gibberellins in imbibed grains as compared with IS9530.

View Article and Find Full Text PDF

Background And Aims: Jatropha curcas is a drought-resistant tree whose seeds are a good source of oil that can be used for producing biodiesel. A successful crop establishment depends on a rapid and uniform germination of the seed. In this work we aimed to characterize the responses of J.

View Article and Find Full Text PDF

Seeds form a convenient vehicle for storage of germplasm, both for agricultural purposes and conservation of wild species. When required, seeds can be taken from storage and germinated, and plants can be propagated for the desired purpose, e.g.

View Article and Find Full Text PDF

The possibility of accurately predicting timing and extent of seedling emergence from natural seed soil banks has long been an objective of both ecologist and agriculturalist. However, as dormancy is a common attribute of many wild seed populations, we should first be able to predict dormancy changes if we intend to predict seedling emergence in the field. In this paper, we discuss the most relevant environmental factors affecting seed dormancy of natural seed soil banks, and present a conceptual framework as an attempt to understand how these factors affect seed-bank dormancy level.

View Article and Find Full Text PDF

Incubation of barley primary dormant grains at 30°C, a temperature at which they cannot germinate results in a reinforcement of their sensitivity to temperature, and in particular in a loss of their ability to germinate at 15–20°C. Incubation of the grains at 30°C in the presence of GA (1 mM) or of isolated embryos prevents this induction of secondary dormancy. In such a condition, embryo ABA content was lower than that measured in embryos of seeds incubated at 30°C on water.

View Article and Find Full Text PDF

Background And Aims: Pre-harvest sprouting susceptibility in grain sorghum (Sorghum bicolor) is related to low seed dormancy and reduced embryo sensitivity to inhibition of germination by abscisic acid (ABA). Intra-specific variability for pre-harvest sprouting might involve differential regulation of ABA signalling genes.

Methods: Sorghum genes encoding homologues for ABA signalling components from other species (ABI5, ABI4, VP1, ABI1 and PKABA1) were studied at the transcriptional and protein level (ABI5) during grain imbibition for two sorghum lines with contrasting sprouting phenotypes and in response to hormones.

View Article and Find Full Text PDF

Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds.

View Article and Find Full Text PDF

At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h.

View Article and Find Full Text PDF

Various studies indicate that cell division is a post-germination phenomenon, with radicle protrusion occurring by cell elongation, while others demonstrate that induction of the cell cycle occurs in osmo-conditioned seeds prior to radicle growth. The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to grain hydration, using: (i) a flow cytometry technique to estimate the percentage of cell nuclei in G(1) and G(2) phases of the cell cycle; and (ii) reverse transcription-PCR (RT-PCR) in order to characterize the expression of the genes encoding cyclin-dependent kinases (CDKA1, CDKB1, and CDKD1) and cyclins (CYCA3, CYCB1, and CYCD4), the main genes involved in the cell cycle and its regulation. Radicle tips of embryos were isolated from seeds placed for various times on water at 30 degrees C and from grains partially hydrated at moisture contents ranging from 11% to 51% fresh weight (FW), which prevent radicle elongation.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L.) seeds (grains) exhibit dormancy at maturity that is largely due to the presence of the glumellae (hulls) that reduce the availability of oxygen (O2) to the embryo. In addition, abscisic acid (ABA) and gibberellins (GAS) interact with O2 to regulate barley seed dormancy.

View Article and Find Full Text PDF

Background And Aims: It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light.

Methods: Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures.

View Article and Find Full Text PDF

Two mechanisms have been suggested as being responsible for dormancy in barley grain: (i) ABA in the embryo, and (ii) limitation of oxygen supply to the embryo by oxygen fixation as a result of the oxidation of phenolic compounds in the glumellae. The aim of the present work was to investigate whether hypoxia imposed by the glumellae interferes with ABA metabolism in the embryo, thus resulting in dormancy. In dormant and non-dormant grains incubated at 20 degrees C and in non-dormant grains incubated at 30 degrees C (i.

View Article and Find Full Text PDF

The effect of cold (stratification) temperature on changes in the sensitivity of Polygonum aviculare seeds to light was investigated. Seeds buried in pots were stored under stratification temperatures (1.6, 7 and 12 degrees C) for 137 d.

View Article and Find Full Text PDF

The role of GAs in promoting seed germination is well known and experiments with seeds from different species have suggested the requirement of de novo synthesis of GAs upon imbibition for germination. There are also strong indications that the enhancement of GA synthesis is part of the mechanism through which environmental signals (i.e.

View Article and Find Full Text PDF