Neutrons constitute a significant component of the secondary cosmic rays and are one of the most important contributors to natural cosmic ray radiation background dose. The study of the cosmic ray neutrons' contribution to the dose equivalent received by humans is an interesting and challenging task for the scientific community. In addition, international regulations demand assessing the biological risk due to radiation exposure for both workers and the general population.
View Article and Find Full Text PDFA multi-shell neutron spectrometer with indium foil detector (In-MuNS) was developed to evaluate intense neutron fields that are generated in medical accelerators. The response matrix of this new spectrometer was calculated from 1 meV to 100 MeV using MCNP5 v.1.
View Article and Find Full Text PDFISO Standard 8529, on Reference neutron radiations, is due for revision. This paper covers proposed changes to Part 1 which dates from 2001. The changes are mainly designed to improve the data on radionuclide source neutron spectra, but also include options for modifying the content, e.
View Article and Find Full Text PDFRadiat Prot Dosimetry
July 2011
Selecting the instruments to determine the operational quantities in the neutron fields produced by particle accelerators involves a combination of aspects, which is peculiar to these environments: the energy distribution of the neutron field, the continuous or pulsed time structure of the beam, the presence of other radiations to which the neutron instruments could have significant response and the large variability in the dose rate, which can be observed when moving from areas near the beam line to free-access areas. The use of spectrometric techniques in support of traditional instruments is highly recommended to improve the accuracy of dosimetric evaluations. The multi-sphere or Bonner Sphere Spectrometer (BSS) is certainly the most used device, due to characteristics such as the wide energy range, large variety of active and passive detectors suited for different workplaces, good photon discrimination and the simple signal management.
View Article and Find Full Text PDFIn the frame of the EU Coordination Action CONRAD (coordinated network for radiation dosimetry), WP4 was dedicated to work on computational dosimetry with an action entitled 'Uncertainty assessment in computational dosimetry: an intercomparison of approaches'. Participants attempted one or more of eight problems. This paper presents the results from problems 4-8-dealing with the overall uncertainty budget estimate; a short overview of each problem is presented together with a discussion of the most significant results and conclusions.
View Article and Find Full Text PDFThe LINAC-ADONE accelerator complex of the INFN-LNF Frascati National Laboratories, operating for 27 y prior to the commissioning of DAPhiNE, was dismantled in 1993. The scraps resulting from the decommissioning of LINAC-ADPhiNE have been temporarily stored in the same Frascati laboratory, waiting for definitive disposal. Relying on recommendations of the IAEA, European Commission and Italian committees, an experimental characterization study of the LNF repository was performed.
View Article and Find Full Text PDF