Publications by authors named "Roberto Ballarini"

Localized deformation and randomly shaped imperfections are salient features of buckling-type instabilities in thin-walled load-bearing structures. However, it is generally agreed that their complex interactions in response to mechanical loading are not yet sufficiently understood, as evidenced by buckling-induced catastrophic failures which continue to today. This study investigates how the intimate coupling between localization mechanisms and geometric imperfections combine to determine the statistics of the pressure required to buckle (the illustrative example of) a hemispherical shell.

View Article and Find Full Text PDF

A brief overview of isolated collagen fibril mechanics testing is followed by presentation of the first results testing fibrils isolated from load-bearing mammalian tendons using a microelectromechanical systems platform. The in vitro modulus (326 ± 112 MPa) and fracture stress (71 ± 23 MPa) are shown to be lower than previously measured on fibrils extracted from sea cucumber dermis and tested with the same technique. Scanning electron microscope images show the fibrils can fail with a mechanism that involves circumferential rupture, whereas the core of the fibril stays at least partially intact.

View Article and Find Full Text PDF

Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis.

View Article and Find Full Text PDF

Traditional single-fiber pull-out type experiments were conducted on individual multiwalled carbon nanotubes (MWNT) embedded in an epoxy matrix using a novel technique. Remarkably, the results are qualitatively consistent with the predictions of continuum fracture mechanics models. Unstable interface crack propagation occurred at short MWNT embedments, which essentially exhibited a linear load-displacement response prior to peak load.

View Article and Find Full Text PDF

Mechanical testing of collagenous tissues at different length scales will provide improved understanding of the mechanical behavior of structures such as skin, tendon, and bone, and also guide the development of multiscale mechanical models. Using a microelectromechanical-systems (MEMS) platform, stress-strain response curves up to failure of type I collagen fibril specimens isolated from the dermis of sea cucumbers were obtained in vitro. A majority of the fibril specimens showed brittle fracture.

View Article and Find Full Text PDF

Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension.

View Article and Find Full Text PDF

Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils.

View Article and Find Full Text PDF