Publications by authors named "Roberto Armstrong-Jr"

Introduction: Brain death (BD) is known to compromise graft quality by causing hemodynamic, metabolic, and hormonal changes. The abrupt reduction of female sex hormones after BD was associated with increased lung inflammation. The use of both corticoids and estradiol independently has presented positive results in modulating BD-induced inflammatory response.

View Article and Find Full Text PDF

Through improved insights into the increasing incidence and detrimental effects of acute kidney injury (AKI), its clinical relevance has become more and more apparent. Although treatment strategies for AKI have also somewhat improved, an adequate remedy still does not exist. Finding one is complicated by a multifactorial pathophysiology and by heterogeneity in the patient population.

View Article and Find Full Text PDF

Background: Ex vivo lung perfusion (EVLP) is a useful tool for assessing lung grafts quality before transplantation. Studies indicate that donor sex is as an important factor for transplant outcome, as females present higher inflammatory response to brain death (BD) than males. Here, we investigated sex differences in the lungs of rats subjected to BD followed by EVLP.

View Article and Find Full Text PDF

Background: Clinical reports associate kidneys from female donors with worse prognostic in male recipients. Brain Death (BD) produces immunological and hemodynamic disorders that affect organ viability. Following BD, female rats are associated with increased renal inflammation interrelated with female sex hormone reduction.

View Article and Find Full Text PDF

As a consequence of systemic inflammation caused by ischemia and reperfusion (I/R) due to aortic occlusion, the lungs can exhibit increased microvascular permeability, local release of pro-inflammatory mediators, and leukocyte infiltration. Lung tissue infiltration by activated neutrophils is followed by acute respiratory distress syndrome, which is linked to acute pulmonary microvascular damage, high mortality rates, and organ dysfunction. Previous studies have demonstrated that female sex hormones modulate the inflammatory response and that prophylactic treatment with 17β-estradiol (E2) can prevent fatalities and preserve mesenteric perfusion and intestinal integrity after ischemia/reperfusion induced by aortic occlusion.

View Article and Find Full Text PDF

Background: Clinical and experimental data highlight the consequences of brain death on the quality of organs and demonstrate the importance of donor state to the results of transplantation. Female rats show higher cardio-pulmonary injury linked to decreased concentrations of female sex hormones after brain-dead (BD). This study evaluated the effect of 17β-estradiol on brain death induced renal injury in female rats.

View Article and Find Full Text PDF

Objectives: Lung transplantation is limited by the systemic repercussions of brain death (BD). Studies have shown the potential protective role of 17β-estradiol on the lungs. Here, we aimed to investigate the effect of estradiol on the long-lasting lung inflammatory state to understand a possible therapeutic application in lung donors with BD.

View Article and Find Full Text PDF

Background: Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high-lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17β-estradiol (E2) treatment on the lungs of female brain dead rats.

View Article and Find Full Text PDF

The viability of donor organs is reduced by hemodynamic and immunologic alterations caused by brain death (BD). Female rats show higher heart inflammation associated with the reduction in female sex hormones after BD. This study investigated the effect of 17β-estradiol (E2) on BD-induced cardiac damage in female rats.

View Article and Find Full Text PDF

Background: Intestine graft viability compromises retrieval in most brain-dead donors. Small bowel transplantation is a complex procedure with worse outcomes than transplantation of other abdominal organs. The hormone 17β-estradiol (E2) has shown vascular protective effects in lung tissue of brain death (BD) male rats.

View Article and Find Full Text PDF

Background: Lung transplantation is a treatment method for end stage lung disease, but the availability of donor lungs remains a major constraint. Brain death (BD) induces hemodynamic instability with microcirculatory hypoperfusion and increased inflammation, leading to pulmonary dysfunction. Hypertonic saline solution (HSS) is a volume expander possessing immunomodulatory effects.

View Article and Find Full Text PDF

Organ donor's age negatively influences graft survival of organs, increasing risk of complications. Aging occurs in both men and women; however, the menopause marks a decrease in sex hormones and a sudden increase in the process of vascular aging. We investigated sex hormones' influence on the lung inflammatory process induced by BD in female rats.

View Article and Find Full Text PDF

Background: Brain death elicits microvascular dysfunction and inflammation, and thereby compromises lung viability for transplantation. As 17β-estradiol was shown to be anti-inflammatory and vascular protective, we investigated its effects on lung injury after brain death in male rats.

Methods: Wistar rats were assigned to: sham-operation by trepanation only (SH, n = 7); brain death (BD, n = 7); administration of 17β-estradiol (280 μg/kg, iv) at 60 minutes after brain death (BD-E2, n = 7).

View Article and Find Full Text PDF

Brain death (BD) affects organs by multiple mechanisms related to hemodynamic effects, hormonal changes, and the systemic inflammatory response, which reduce organ function and viability. BD reduces microcirculatory perfusion in rat mesentery; this disturbance is also observed in the pancreas and lungs. Sex hormones can affect microcirculatory function, altering tissue perfusion and influencing the inflammatory process.

View Article and Find Full Text PDF

Background: Brain death (BD) induces hemodynamic instability with microcirculatory hypoperfusion, leading to increased organ inflammation and dysfunction. This study investigated the effects of 7.5% hypertonic saline solution (HSS) on mesenteric microcirculatory dysfunction and inflammation in a rat model of BD.

View Article and Find Full Text PDF

Background: Donor sex has been suggested to be a factor influencing organ transplantation outcome. Sex hormones possess inflammatory and immune-mediating properties; therefore, immune responses may differ between males and females. Brain death (BD) affects organ function by numerous mechanisms including alterations in hemodynamics, hormonal changes, and increased systemic inflammation.

View Article and Find Full Text PDF