Publications by authors named "Roberto Andre Kraenkel"

Brazil was one of the countries most affected during the first year of the COVID-19 pandemic, in a pre-vaccine era, and mathematical and statistical models were used in decision-making and public policies to mitigate and suppress SARS-CoV-2 dispersion. In this article, we intend to overview the modeling for COVID-19 in Brazil, focusing on the first 18 months of the pandemic. We conducted a scoping review and searched for studies on infectious disease modeling methods in peer-reviewed journals and gray literature, published between January 01, 2020, and June 2, 2021, reporting real-world or scenario-based COVID-19 modeling for Brazil.

View Article and Find Full Text PDF

Background: Vaccines developed between 2020 and 2021 against the SARS-CoV-2 virus were designed to diminish the severity and prevent deaths due to COVID-19. However, estimates of the effectiveness of vaccination campaigns in achieving these goals remain a methodological challenge. In this work, we developed a Bayesian statistical model to estimate the number of deaths and hospitalisations averted by vaccination of older adults (above 60 years old) in Brazil.

View Article and Find Full Text PDF

Background: Developing countries have experienced significant COVID-19 disease burden. With the emergence of new variants, particularly omicron, the disease burden in children has increased. When the first COVID-19 vaccine was approved for use in children aged 5-11 years of age, very few countries recommended vaccination due to limited risk-benefit evidence for vaccination of this population.

View Article and Find Full Text PDF

We simulate the impact of school reopening during the COVID-19 pandemic in three major urban centers in Brazil to identify the epidemiological indicators and the best timing for the return of in-school activities and the effect of contact tracing as a mitigation measure. Our goal is to offer guidelines for evidence-based policymaking. We implement an extended SEIR model stratified by age and considering contact networks in different settings - school, home, work, and community, in which the infection transmission rate is affected by various intervention measures.

View Article and Find Full Text PDF

Introduction: Brazil experienced moments of collapse in its health system throughout 2021, driven by the emergence of variants of concern (VOC) combined with an inefficient initial vaccination strategy against Covid-19.

Objectives: To support decision-makers in formulating COVID-19 immunization policy in the context of limited vaccine availability and evolving variants over time, we evaluate optimal strategies for Covid-19 vaccination in Brazil in 2021, when vaccination was rolled out during Gamma variant predominance.

Methods: Using a discrete-time epidemic model we estimate Covid-19 deaths averted, considering the currently Covid-19 vaccine products and doses available in Brazil; vaccine coverage by target population; and vaccine effectiveness estimates.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 variant of concern (VOC) P.1 (Gamma variant) emerged in the Amazonas State, Brazil, in November 2020. The epidemiological consequences of its mutations have not been widely studied, despite detection of P.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic highlighted the importance of vaccination strategies, particularly as vaccines became available in late 2020, with discussions around the cost-effectiveness of delaying second doses to increase first-dose coverage.
  • A new mathematical model was developed to analyze two-dose vaccination schedules and optimize vaccination rates with a focus on minimizing deaths, considering vaccine production rates and the effectiveness of first and second doses.
  • The findings suggest that the optimal timing for second doses depends on the efficacy of the first dose, vaccine production capacity, and the characteristics of each vaccine, emphasizing the need for strategic planning in vaccination campaigns.
View Article and Find Full Text PDF

Since the emergence of the novel coronavirus disease 2019 (COVID-19), mathematical modelling has become an important tool for planning strategies to combat the pandemic by supporting decision-making and public policies, as well as allowing an assessment of the effect of different intervention scenarios. A proliferation of compartmental models were developed by the mathematical modelling community in order to understand and make predictions about the spread of COVID-19. While compartmental models are suitable for simulating large populations, the underlying assumption of a well-mixed population might be problematic when considering non-pharmaceutical interventions (NPIs) which have a major impact on the connectivity between individuals in a population.

View Article and Find Full Text PDF

This article discusses the epidemic situation of Covid-19 in Brazil, in the face of the emergence of a new strain called P.1, which is more transmissible and may be associated with reinfection. Given the collapse of hospital care in Manaus in January 2021 and the results of three recent preprints, each that reports increased transmissibility of the P.

View Article and Find Full Text PDF

In this work we analyze potential environmental drivers of malaria cases in Northwestern Argentina. We inspect causal links between malaria and climatic variables by means of the convergent cross mapping technique, which provides a causality criterion from the theory of dynamic systems. Analysis is based on 12 years of weekly malaria P.

View Article and Find Full Text PDF

As environments become increasingly degraded, mainly due to human activities, species are often subject to isolated habitats surrounded by unfavorable regions. Since the pioneering work by Skellam [25] mathematical models have provided useful insights into the population persistence in such cases. Most of these models, however, neglect the sex structure of populations and the differences between males and females.

View Article and Find Full Text PDF

Groups in nature can be formed by interactions between individuals, or by external pressures like predation. It is reasonable to assume that groups formed by internal and external conditions have different dynamics and structures. We propose a computational model to investigate the effects of individual recognition on the formation and structure of animal groups.

View Article and Find Full Text PDF

Background: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission.

View Article and Find Full Text PDF