The new challenge in the investigation of cultural heritage is the possibility to obtain stratigraphical information about the distribution of the different organic and inorganic components without sampling. In this paper recently commercialized analytical set-up, which is able to co-register VNIR, SWIR, and XRF spectral data simultaneously, is exploited in combination with an innovative multivariate and multiblock high-throughput data processing for the analysis of multilayered paintings. The instrument allows to obtain elemental and molecular information from superficial to subsurface layers across the investigated area.
View Article and Find Full Text PDFX-Ray Fluorescence (XRF) scanning is a widespread technique of high importance and impact since it provides chemical composition maps crucial for several scientific investigations. There are continuous requirements for larger, faster and highly resolved acquisitions in order to study complex structures. Among the scientific applications that benefit from it, some of them, such as wide scale brain imaging, are prohibitively difficult due to time constraints.
View Article and Find Full Text PDFThe choice of the best sampling strategy to capture mean values of functional traits for a species/population, while maintaining information about traits' variability and minimizing the sampling size and effort, is an open issue in functional trait ecology. Intraspecific variability (ITV) of functional traits strongly influences sampling size and effort. However, while adequate information is available about intraspecific variability between individuals (ITV) and among populations (ITV), relatively few studies have analyzed intraspecific variability within individuals (ITV).
View Article and Find Full Text PDF1. Spatially resolved X-ray fluorescence (XRF) spectroscopy with synchrotron radiation is a technique that allows imaging and quantification of chemical elements in biological specimens with high sensitivity. In the present study, we applied XRF techniques at a macro and micro level to carry out drug distribution studies on ex vivo models to confirm the hepatobiliary disposition of the Gd-based magnetic resonance imaging contrast agent B22956/1.
View Article and Find Full Text PDF