Publications by authors named "Roberto A Geremia"

We investigated root communities of arbuscular mycorrhizal fungi (AMF) in relation to lavender (Lavandula angustifolia) and lavandin (Lavandula intermedia) health status from organic and conventional fields affected by Phytoplasma infection. The intensity of root mycorrhizal colonization was significantly different between diseased and healthy plants and was higher in the latter regardless of agricultural practice. This difference was more pronounced in lavender.

View Article and Find Full Text PDF
Article Synopsis
  • Foundation plants, like the alpine cushion moss campion, influence local ecosystems, but how different genetic variations within a plant species affect this is not well studied.
  • Research showed that two subspecies of the moss campion have different effects on soil conditions and fungal communities, even when growing on the same type of rock.
  • The genetic differences in the plants were linked to specific types of fungi present in the soil, indicating that both the type of rock and the plant's genetics play important roles in shaping soil life and ecosystem interactions.
View Article and Find Full Text PDF

The effect of plant species composition on soil microbial communities was studied at the multiregional level. We compared the soil microbial communities of alpine natural grasslands dominated by Carex curvula and anthropogenic subalpine pastures dominated by Nardus stricta. We conducted paired sampling across the Carpathians and the Alps and used Illumina sequencing to reveal the molecular diversity of soil microbes.

View Article and Find Full Text PDF

We investigated the capacity of a consortium of ascomycetous strains, Doratomyces nanus, Doratomyces purpureofuscus, Doratomyces verrucisporus, Myceliophthora thermophila, Phoma eupyrena and Thermoascus crustaceus in the mycoremediation of historically contaminated soil and sediment by polychlorinated biphenyls (PCBs). Analyses of 15 PCB concentrations in three mesocosms containing soil from which the fungal strains had previously been isolated, revealed significant PCB depletions of 16.9% for the 6 indicator PCBs (i-PCBs) and 18.

View Article and Find Full Text PDF

This study investigated the impacts of an organochlorine (OC, γ-hexachlorocyclohexane and chlorobenzenes) mixture on microbial communities associated to Phragmites australis rhizosphere. Seventy-eight distinct colony morphotypes were isolated, cultivated and analysed by 16S rDNA sequence analysis. Toxicity tests confirmed sensitivity (e.

View Article and Find Full Text PDF

Up to now, most studies on polychlorinated biphenyl (PCB) bioremediation have examined the ability of model fungal strains to biodegrade PCBs. Yet, there is limited information concerning the potential of autochthonous filamentous fungal strains in the biodegradation of PCBs and their possible use in the environmental technologies. In this study, we investigated the capacity of autochthonous fungal strains in the biodegradation of PCBs by isolating 24 taxa from former industrial sites highly contaminated by PCBs.

View Article and Find Full Text PDF

This study focuses on the distribution of bacterial and fungal communities within the microstructure of a multi-contaminated sedimentary layer resulting from urban stormwater infiltration. Fractionation was performed on the basis of differential porosity and aggregate grain size, resulting in five fractions: leachable fitting macroporosity, < 10, 10-160, 160-1000 μm fitting aggregates, > 1000 μm. Amounts of both bacterial and fungal biomasses are greater in the < 10 μm and leachable fractions.

View Article and Find Full Text PDF

Background: The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.

View Article and Find Full Text PDF

The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin.

View Article and Find Full Text PDF

We explored the potential of the cox1 gene in the species resolution of soil fungi and compared it with the nuclear internal transcribed spacer (ITS) and small subunit (SSU)-rDNA. Conserved primers allowing the amplification of the fungal cox1 gene were designed, and a total of 47 isolates of Zygomycota and Ascomycota were investigated. The analysis revealed a lack of introns in >90% of the isolates.

View Article and Find Full Text PDF

The temporal and spatial snow cover dynamics is the primary factor controlling the plant communities' composition and biogeochemical cycles in arctic and alpine tundra. However, the relationships between the distribution of snow and the diversity of soil microbial communities remain largely unexplored. Over a period of 2 years, we monitored soil microbial communities at three sites, including contiguous alpine meadows of late and early snowmelt locations (LSM and ESM, respectively).

View Article and Find Full Text PDF

Background: The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti) in insect control programs.

View Article and Find Full Text PDF

CE fingerprint methods are commonly used in microbial ecology. We have previously noticed that the position and number of peaks in CE-SSCP (single-strand conformation polymorphism) profiles depend on the DNA polymerase used in PCR [1]. Here, we studied the fragments produced by Taq polymerase as well as four commercially available proofreading polymerases, using the V3 region of the Escherichia coli rss gene as a marker.

View Article and Find Full Text PDF

Fungal communities are key components of soil, but the study of their ecological significance is limited by a lack of appropriated methods. For instance, the assessment of fungi occurrence and spatio-temporal variation in soil requires the analysis of a large number of samples. The molecular signature methods provide a useful tool to monitor these microbial communities and can be easily adapted to capillary electrophoresis (CE) allowing high-throughput studies.

View Article and Find Full Text PDF

The molecular signature of bacteria from soil ecosystems is an important tool for studying microbial ecology and biogeography. However, a high-throughput technology is needed for such studies. In this article, we tested the suitability of available methods ranging from soil DNA extraction to capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) for high-throughput studies.

View Article and Find Full Text PDF

CPS (capsular polysaccharide) is a major virulence factor in Streptococcus pneumoniae. Biosynthesis of CPS RU (repeat unit) proceeds by sequential transfer of sugar residues from the appropriate sugar donor to an activated lipid carrier by committed GTs (glycosyltransferases). While the nucleotide sequence of many cps loci is already known, the real substrate specificity of the hypothetical GTs, as well as the sequence of sugar addition is unclear.

View Article and Find Full Text PDF

The gene wchA (cap8E) belongs to the cps8 locus that is involved in biosynthesis of the capsular polysaccharide (CPS) repeat unit (RU) of the virulent Streptococcus pneumoniae serotype 8. We report here the biochemical characterization of the membrane-associated protein WchA (Cap8E), overexpressed in Escherichia coli BL21(DE3)/pLysS. Our results demonstrate that the recombinant enzyme transfers in vitro a glucosyl-1-phosphate from UDP-glucose to an endogenous phosphoryl-polyprenol, thereby priming the RU biosynthetic pathway of S.

View Article and Find Full Text PDF

The synthesis of sufficient amounts of oligosaccharides is the bottleneck for the study of their biological function and their possible use as drug. As an alternative for chemical synthesis, we propose to use Escherichia coli as a "living factory." We have addressed the production of the Galp alpha(1-3)Galp beta(1-4)GlcNAc epitope, the major porcine antigen responsible for xenograft rejection.

View Article and Find Full Text PDF

Classically, alpha-1,4-glucan synthases have been divided into two families, animal/fungal glycogen synthases (GS) and bacterial/plant starch synthases (G(S)S), according to differences in sequence, sugar donor specificity and regulatory mechanisms. Detailed sequence analysis, predicted secondary structure comparison and threading analysis show that these two families are structurally related and that some domains of GSs were acquired to meet regulatory requirements. Archaeal G(S)S present structural and functional features that are conserved in one, the other or both families.

View Article and Find Full Text PDF