Publications by authors named "Roberta Sagheddu"

Background: Cachexia, a multifactorial syndrome affecting more than 50% of patients with advanced cancer and responsible for ~20% of cancer-associated deaths, is still a poorly understood process without a standard cure available. Skeletal muscle atrophy caused by systemic inflammation is a major clinical feature of cachexia, leading to weight loss, dampening patients' quality of life, and reducing patients' response to anticancer therapy. RAGE (receptor for advanced glycation end-products) is a multiligand receptor of the immunoglobulin superfamily and a mediator of muscle regeneration, inflammation, and cancer.

View Article and Find Full Text PDF

Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal X-linked disease affecting striated muscles, which undergo progressive degeneration and chronic inflammation. Receptor for advanced glycation end-products (RAGE), a multiligand receptor involved in myogenesis and inflammation, is absent in healthy adult muscles but is re-expressed in myoblasts, regenerating myofibers and activated immune cells upon acute muscle injury, and in certain myopathies. We show here that RAGE is expressed and chronically stimulated in muscles of mdx mice, an experimental model of DMD, which also release high amounts of the RAGE ligands, HMGB1 and S100B.

View Article and Find Full Text PDF

Regeneration of injured skeletal muscles relies on a tightly controlled chain of cellular and molecular events. We show that appropriate levels of S100B protein are required for timely muscle regeneration after acute injury. S100B released from damaged myofibers and infiltrating macrophages expands the myoblast population, attracts macrophages and promotes their polarization into M2 (pro-regenerative) phenotype, and modulates collagen deposition, by interacting with RAGE (receptor for advanced glycation end-products) or FGFR1 (fibroblast growth factor receptor 1) depending on the muscle repair phase and local conditions.

View Article and Find Full Text PDF

Embryonal rhabdomyosarcomas (ERMSs) show elevated levels of PAX7, a transcription factor that marks quiescent adult muscle stem (satellite) cells and is important for proliferation and survival of activated satellite cells and whose timely repression is required for myogenic differentiation. However, the mechanism of PAX7 accumulation in ERMSs and whether high PAX7 causes uncontrolled proliferation in ERMS remains to be elucidated. The receptor for advanced glycation end-products (RAGE, encoded by AGER) transduces a myogenic and anti-proliferative signal in myoblasts, and stable transfection of the ERMS cell line TE671, which does not express RAGE, with AGER results in reduced proliferation and formation of tumor masses in vivo, and enhanced apoptosis and myogenic differentiation.

View Article and Find Full Text PDF

Expression of the paired-box 7 (PAX7) transcription factor is regulated during both myoblast proliferation and differentiation: high levels of PAX7 compromise myogenic differentiation because of excess and prolonged proliferation, whereas low levels of PAX7 result in precocious differentiation. We showed that myogenin repressed Pax7 transcription in differentiating myoblasts by binding to specific recognition sites in the Pax7 promoter, and that high-mobility group box 1 (HMGB1)-receptor for advanced glycation end-products (RAGE) signaling was required for myogenin induction and myogenin-dependent repression of Pax7 transcription. In addition, PAX7 negatively and myogenin positively regulated RAGE expression.

View Article and Find Full Text PDF