Publications by authors named "Roberta Ruggiero"

Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.

View Article and Find Full Text PDF

Background: Magnesium (Mg) and its alloys are promising candidates for biodegradable materials in next-generation bone implants due to their favourable mechanical properties and biodegradability. However, their rapid degradation and corrosion, potentially leading to toxic byproducts, pose significant challenges for widespread use.

Objectives: This study aimed to address the challenges associated with Mg-based materials by thoroughly evaluating the biocompatibility, genotoxicity, and mechanical properties of Mg-based devices manufactured via Single Point Incremental Forming (SPIF).

View Article and Find Full Text PDF

: Magnesium alloys degrade rapidly in salt solutions, which limits their use without passivating treatments. AZ31 alloy is particularly promising for implant applications owing to its biodegradability and mechanical properties, necessitating effective corrosion-resistant coatings. : In this study, a self-passivating reactive coating was designed and evaluated for AZ31 magnesium alloy plates using β-tricalcium phosphate (TCP) to enhance corrosion resistance and biocompatibility.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored the biocompatibility, osteogenic potential, and antibacterial properties of magnesium alloy biomedical devices created through the Superplastic Forming (SPF) process and treated with Hydrothermal (HT) and Sol-Gel methods.
  • Both treatment types showed high biocompatibility, with the cellular analysis revealing increased expression of osteogenic genes and reduced bacterial growth when in contact with the magnesium-treated devices compared to controls.
  • The results suggest that these modified magnesium alloys could improve temporary devices used in maxillary reconstruction, potentially reducing the need for additional surgeries and lowering the risk of implant failures from bacterial infections.
View Article and Find Full Text PDF

Zirconia and polyetheretherketone (PEEK) are two biomaterials widely investigated as substitute for metals in oral prosthetic rehabilitation. To achieve a proper biomechanical behavior, the prosthetic biomaterials must ensure a good resistance to loads, as this is a crucial characteristic enabling their use in dental applications. The aim of this study was to investigate differences in the fracture resistance of different biomaterials in an experimental environment: fixed partial dentures (FPDs) screwed in a prototype of biomimetic mandible.

View Article and Find Full Text PDF

: Antimicrobial resistance represents a serious problem, and it may be life-threatening in the case of severe hospital-acquired infections (HAI). Antibiotic abuse and multidrug resistance (MDR) have significantly increased this burden in the last decades. The aim of this study was to investigate the distribution and susceptibility rates of five selected bacterial species (, , , and ) in two healthcare settings located in the Apulia region (Italy).

View Article and Find Full Text PDF