Background: To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines.
Methodology/principal Findings: The responses of IgG antibodies to 9 P.
Malaria remains one of the most important parasitic diseases in the world. The multidrug-resistant Plasmodium strains make the treatment currently available for malaria less effective. Therefore, the development of new drugs is necessary to overcome therapy resistance.
View Article and Find Full Text PDFParasite Immunol
May 2020
Although antibodies are considered critical for malaria protection, little is known about the mechanisms/factors that maintain humoral immunity, especially regarding the induction and maintenance of memory B cells over time. In Brazilian endemic areas, this is the first time that the profile of antibody responses and the occurrence of antigen-specific memory B cells (MBC) against P vivax were investigated during acute malaria and up to six months after parasite clearance. For this, we selected two peptides, PvAMA-1 and PvMSP-9 , which represent the apical membrane antigen-1 and merozoite surface protein-9 of P vivax, respectively.
View Article and Find Full Text PDFParasite Immunol
September 2019
Plasmodium falciparum-specific antibodies tend to be short-lived, but their cognate memory B cells (MBCs) circulate in the peripheral blood of exposed subjects for several months or years after the last infection. However, the time course of antigen-specific antibodies and B-cell responses to the relatively neglected parasite Plasmodium vivax remains largely unexplored. Here, we showed that uncomplicated vivax malaria elicits short-lived antibodies but long-lived MBC responses to a major blood-stage P vivax antigen, apical membrane protein 1 (PvAMA-1), in subjects exposed to declining malaria transmission in the Amazon Basin of Brazil.
View Article and Find Full Text PDFParasitic diseases, such as malaria and leishmaniasis, are relevant public health problems worldwide. For both diseases, the alarming number of clinical cases and deaths reported annually has justified the incentives directed to better understanding of host's factors associated with susceptibility to infection or protection. In this context, over recent years, some studies have given special attention to B lymphocytes with a regulator phenotype, known as Breg cells.
View Article and Find Full Text PDF