Due to the spread of resistance to front-line artemisinin derivatives worldwide, there is a need for new antimalarials. Tartrolon E (TrtE), a secondary metabolite of a symbiotic bacterium of marine bivalve mollusks, is a promising antimalarial because it inhibits the growth of sexual and asexual blood stages of at sub-nanomolar levels. The potency of TrtE warrants further investigation into its mechanism of action, cytotoxicity, and ease with which parasites may evolve resistance to it.
View Article and Find Full Text PDFNew therapeutic agents for cryptosporidiosis are a critical medical need. The marine organic compound, tartrolon E (trtE), is highly effective against multiple apicomplexan parasites, including . Understanding the mechanism of action of trtE is required to advance in the drug development pipeline.
View Article and Find Full Text PDFsp. are apicomplexan parasites that cause significant morbidity and possible mortality in humans and valuable livestock. There are no drugs on the market that are effective in the population most severely affected by this parasite.
View Article and Find Full Text PDFAnimals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens.
View Article and Find Full Text PDFCryptosporidium is a waterborne gastrointestinal parasite that causes outbreaks of diarrheal disease worldwide. Despite the impact of this parasite on human health there are no effective drugs or vaccines. Transcriptomic data can provide insights into host-parasite interactions that lead to identification of targets for therapeutic interventions.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2020
New treatments for the diseases caused by apicomplexans are needed. Recently, we determined that tartrolon E (trtE), a secondary metabolite derived from a shipworm symbiotic bacterium, has broad-spectrum anti-apicomplexan parasite activity. TrtE inhibits apicomplexans at nM concentrations in vitro, including Cryptosporidium parvum, Toxoplasma gondii, Sarcocystis neurona, Plasmodium falciparum, Babesia spp.
View Article and Find Full Text PDFApicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans.
View Article and Find Full Text PDFDevelopment of an effective vaccine against cryptosporidiosis is a medical and veterinary priority. However, many putative Cryptosporidium vaccine candidates such as surface and apical complex antigens are posttranslationally modified with O- and N-linked glycans. This presents a significant challenge to understanding the functions of these antigens and the immune responses to them.
View Article and Find Full Text PDFThe factors involved in gain or loss of virulence in Babesia bovis are unknown. Spherical body protein 2 truncated copy 11 (sbp2t11) transcripts in B. bovis were recently reported to be a marker of attenuation for B.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
April 2018
The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM), a serious neurologic disease of horses. Many horses in the U.S.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut.
View Article and Find Full Text PDFThe genetic diversity of Cryptosporidium spp. from infected children was characterized for the first time in Bangladesh. Seven C.
View Article and Find Full Text PDFCryptosporidium parvum oocysts, which are spread by the fecal-oral route, have a single, multilayered wall that surrounds four sporozoites, the invasive form. The C. parvum oocyst wall is labeled by the Maclura pomifera agglutinin (MPA), which binds GalNAc, and the C.
View Article and Find Full Text PDFThe apicomplexan parasite Cryptosporidium is a significant cause of diarrheal disease worldwide. Previously, we reported that a Cryptosporidium parvum subtilisin-like serine protease activity with furin-type specificity cleaves gp40/15, a glycoprotein that is proteolytically processed into gp40 and gp15, which are implicated in mediating infection of host cells. Neither the enzyme(s) responsible for the protease activity in C.
View Article and Find Full Text PDFCryptosporidium, a waterborne enteric parasite, is a frequent cause of diarrheal disease outbreaks worldwide. Thus far, the few antigens shown to be important for attachment to and invasion of the host cell by Cryptosporidium are all mucin-like glycoproteins. In order to investigate other antigens that could be important for Cryptosporidium host-parasite interactions, the Cryptosporidium genome databases were mined for other mucin-like genes.
View Article and Find Full Text PDFCryptosporidium spp. are waterborne apicomplexan parasites responsible for outbreaks of diarrheal disease worldwide. Antigens involved in zoite invasion into host cells have been the focus of many investigations as these may prove to be good vaccine candidates.
View Article and Find Full Text PDFCryptosporidium is a cause of diarrheal disease worldwide. Parasite glycoproteins involved in invasion of Cryptosporidium into host cells have been investigated as possible targets for effective interventions against this parasite. One of these, Cpgp40/15, is expressed as a precursor protein that is cleaved by a parasite-derived furin-like protease activity into gp15, a glycophosphatidyl inositol anchored surface protein, and gp40, that associates with gp15 and binds to host cells.
View Article and Find Full Text PDFCryptosporidium sp. is a significant cause of diarrheal disease, particularly in human immunodeficiency virus (HIV)-infected patients in developing countries. We recently cloned and sequenced several alleles of the highly polymorphic single-copy Cryptosporidium parvum gene Cpgp40/15.
View Article and Find Full Text PDFThe enteric protozoan Cryptosporidium parvum infects intestinal epithelial cells in a wide range of hosts, causing severe gastrointestinal disease. The invasive sporozoite stage most likely attaches to and invades host cells through multiple host receptor/parasite ligand interactions. Preliminary evidence suggests that the glycoprotein products of the Cpgp40/15 gene, gp40 and gp15, are involved in these interactions.
View Article and Find Full Text PDF