The effects of processing parameters on conventional molding techniques are well-known. However, the fabrication of a carbon fibre (CF)/epoxy composite via additive manufacturing (AM) is in the early development stages relative to fabrications based on resin infusion. Accordingly, we introduce predictions of the flexural strength, modulus, and strain for high-performance 3D printable CF/epoxy composites.
View Article and Find Full Text PDFCellulose and its derivatives are widely explored for films and thickening of pharmaceutical solutions, in paints, as reinforcement in composites, among others. This versatility is due to advantages such as renewability, low cost, and environmental friendliness. When used in polymer composites, due to the hydrophilic character of the cellulose, surface chemical modification is highly recommended to improve its compatibility with the polymeric matrix.
View Article and Find Full Text PDFMicrocrystalline cellulose (MCC) can be a reinforcement in composites, especially after surface modification. In this paper, MCC was modified using 3-aminopropyltriethoxysilane (APTES) in the following ratios (MCC/APTES): 1:3, 1:4, 1:5, 1:10). The MCC morphologies did not change with the treatment even though the distribution of APTES over the MCC surface varied.
View Article and Find Full Text PDF