Genomic selection combined with in vitro embryo production (IVEP) with oocytes from heifer calves provides a powerful technology platform to reduce generation interval and significantly increase the rate of genetic gain in cattle. The ability to obtain oocytes with developmental competence from calves has been recognised for more than 60years. There is renewed interest in the potential of this reproductive technology as the beef and dairy industries seek to identify and multiply animals that satisfy consumer demand for efficient utilisation of natural resources, with minimal environmental impact and high product quality.
View Article and Find Full Text PDFHeat stress (HS) has a pronounced deleterious effect on fertility in dairy herds throughout the world, especially in hot and humid summer months in tropical and subtropical areas. Summer HS reduces feed intake and increases negative energy balance, induces changes in ovarian follicular dynamics, reduces estrus detection rates and alters oviductal function leading to fertilization failure and early embryonic death. Furthermore, oocytes harvested from lactating cows during summer HS have a decreased ability to develop to the blastocyst stage after in vitro fertilization when compared with oocytes harvested during winter.
View Article and Find Full Text PDFWe aimed with the present study to evaluate the effects of FSH treatment (200 mg) split in four or six administrations on ovarian follicle stimulation and in vitro oocyte competence for embryo production in dairy cows with synchronized follicular wave emergence. On random days of the estrous cycle (Day 0), non-lactating Holstein cows received a progesterone (P4)-releasing intravaginal device and 2 mg estradiol benzoate IM. On Day 3, they received 0.
View Article and Find Full Text PDFBiol Reprod
March 2016
Oocyte quality is known to be a major cause of infertility in repeat-breeder (RB) and heat-stressed dairy cows. However, the mechanisms by which RB oocytes become less capable of supporting embryo development remain largely unknown. Thus, the aim of this study was to investigate whether the decreased oocyte competence of RB cows (RBs) during summer is associated with an altered gene expression profile and a decrease in mitochondrial DNA (mtDNA) copy number.
View Article and Find Full Text PDFOocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR) relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design.
View Article and Find Full Text PDFNumerous studies have shown that it is possible to manipulate follicular and luteal dynamics, thereby eliminating the need for oestrus detection in embryo transfer (ET) programmes. Fixed-time ET (FTET) protocols are based on the use of gonadotrophin-releasing hormone (GnRH) and prostaglandin (PG) F or progesterone/progestogen (P4)-releasing devices and oestradiol. The FTET protocols increases the proportion of recipients transferred, and therefore pregnancy rates, compared with the use of PGF followed by ET 7 days after oestrus.
View Article and Find Full Text PDFTen male dogs were distributed into three experimental groups for infection with Toxoplasma gondii: GI - three dogs inoculated with 2.0x10(5) P strais oocysts, GII - three dogs infected with 1.0x10(6) RH strain tachyzoites, and GIII - four controls dogs.
View Article and Find Full Text PDF