Biochim Biophys Acta Gene Regul Mech
December 2024
Primary Effusion Lymphoma (PEL) cells carry Kaposi's sarcoma-associated herpesvirus (KSHV) in a latent state, except for a small number of cells in which the virus replicates to ensure its persistence into the infected host. However, the lytic cycle can be reactivated in vitro by exposing these lymphoma cells to various treatments, leading to cell lysis. To restrict viral antigen expression, KSHV induces repressive epigenetic changes, including DNA methylation and histone modifications.
View Article and Find Full Text PDFHeat shock proteins (HSPs) are highly expressed in cancer cells and represent a promising target in anti-cancer therapy. In this study, we investigated for the first time the expression of high-molecular-weight HSP110, belonging to the HSP70 family of proteins, in Primary Effusion Lymphoma (PEL) and explored its role in their survival. This is a rare lymphoma associated with KSHV, for which an effective therapy remains to be discovered.
View Article and Find Full Text PDFThe novelty of this study lies in the fact that it shows that IRE1 alpha endoribonuclease inhibition by 4μ8C was able to counteract Epstein-Barr virus-driven lymphomagenesis in NOD SCID gamma mice and prevent B-cell immortalization unveiling that this drug may be a promising therapeutic approach to reduce the risk of post-transplant lymphoproliferative disorders (PTLD) onset in immune-deficient patients. This hypothesis is further supported by the fact that 4μ8C impaired the survival of PTLD-like cells derived from mice, meaning that it could be helpful also in the case in which there is the possibility that these malignancies have begun to arise.
View Article and Find Full Text PDFEBV is a gammaherpesvirus strongly associated to human cancer. The virus has been shown to play a role also in inflammatory diseases, including IBD, in the context of which colon cancer more frequently arise. In this study, we show for the first time that EBV infects primary colonic epithelial cells (HCoEpC), promotes pro-inflammatory cytokine secretion and activates molecular pathways bridging inflammation and cancer, such as ERK1/2.
View Article and Find Full Text PDFNFE2L2 and STAT3 are key pro-survival molecules, and thus, their targeting may represent a promising anti-cancer strategy. In this study, we found that a positive feedback loop occurred between them and provided evidence that their concomitant inhibition efficiently impaired the survival of PEL cells, a rare, aggressive B cell lymphoma associated with the gammaherpesvirus KSHV and often also EBV. At the molecular level, we found that NFE2L2 and STAT3 converged in the regulation of several pro-survival molecules and in the activation of processes essential for the adaption of lymphoma cells to stress.
View Article and Find Full Text PDFNRF2 is a transcription factor that plays a pivotal role in carcinogenesis, also through the interaction with several pro-survival pathways. NRF2 controls the transcription of detoxification enzymes and a variety of other molecules impinging in several key biological processes. This perspective will focus on the complex interplay of NRF2 with STAT3, another transcription factor often aberrantly activated in cancer and driving tumorigenesis as well as immune suppression.
View Article and Find Full Text PDFPrimary effusion lymphoma (PEL) is a rare and aggressive B-cell lymphoma, against which current therapies usually fail. In the present study, we show that targeting HSPs, such as HSP27, HSP70 and HSP90, could be an efficient strategy to reduce PEL cell survival, as it induces strong DNA damage, which correlated with an impairment of DDR. Moreover, as HSP27, HSP70 and HSP90 cross talk with STAT3, their inhibition results in STAT3 de-phosphorylation and.
View Article and Find Full Text PDFIt is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR) may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL) cells, in correlation with c-Myc downregulation.
View Article and Find Full Text PDFPEL is a rare B cell lymphoma associated with KSHV that mainly arises in immune-deficient individuals. The search for new drugs to treat this cancer is still ongoing given its aggressiveness and the poor response to chemotherapies. In this study, we found that DMF, a drug known for its anti-inflammatory properties which is registered for the treatment of psoriasis and relapsing-remitting MS, could be a promising therapeutic strategy against PEL.
View Article and Find Full Text PDFPharmaceutics
March 2022
Understanding the effects induced by carcinogens on primary colonic epithelial cells and how to counteract them might help to prevent colon cancer, which is one of the most frequent and aggressive cancers. In this study, we exposed primary human colonic epithelial cells (HCoEpC) to Benzo[a]pyrene (B[a]P) and found that it led to an increased production of pro-inflammatory cytokines and activated ERK1/2 and mTOR. These pathways are known to be involved in inflammatory bowel disease (IBD), which represents a colon cancer risk factor.
View Article and Find Full Text PDFWe have previously shown that Zinc supplementation triggered ER stress/UPR in cancer cells undergoing treatment by genotoxic agents, reactivated wtp53 in cancer cells harboring mutant p53 (mutp53) and potentiated the activity of wtp53 in those carrying wtp53. In this study, we used Zinc chloride alone or in combination with 2 Gy radiation to treat Primary Effusion Lymphoma (PEL) cells, an aggressive B-cell lymphoma associated with KSHV that harbors wt or partially functioning p53. We found that Zinc triggered a mild ER stress/UPR in these lymphoma cells and activated ERK1/2, molecule known to sustain cell survival in the course of UPR activation.
View Article and Find Full Text PDFReactive oxygen species (ROS) and DNA repair, respectively, promote and limit oncogenic transformation of B cells driven by Epstein-Barr virus (EBV). We have previously shown that EBV infection reduced autophagy in primary B lymphocytes and enhanced ROS and interleukin 6 (IL-6) release, promoting B-cell proliferation and immortalization. In this study, we explored the role of p62/SQSTM1, accumulated as a consequence of autophagy reduction in EBV-infected B lymphocytes, and found that it exerted a growth-suppressive effect in these cells.
View Article and Find Full Text PDFStatins are inhibitors of the mevalonate pathway that besides being cholesterol lowering agents, display anti-cancer properties. This is because cholesterol is an essential component of cell membranes but also because the mevalonate pathway controls protein farnesylation and geranylation, processes essential for the activity of GTPase family proteins. In this study, we found that Lovastatin exerted a dose- and time-dependent cytotoxic effect against PEL cells, an aggressive B cell lymphoma strictly associated with the gammaherpesvirus KSHV and characterized by a poor response to conventional chemotherapies.
View Article and Find Full Text PDFPrimary Effusion Lymphoma (PEL) is a highly aggressive B cell lymphoma associated with Kaposi's Sarcoma-associated Herpesvirus (KSHV). It is characterized by a high level of basal Endoplasmic Reticulum (ER) stress, Unfolded Protein Response (UPR) activation and constitutive phosphorylation of oncogenic pathways such as the Signal Transducer and activator of Transcription (STAT3). In this study, we found that the inositol requiring kinase (IRE) 1alpha/X-box binding protein (XBP1) axis of UPR plays a key role in the survival of PEL cells, while double stranded RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor (ATF) 6 slightly influence it, in correlation with the capacity of the IRE1alpha/XBP1 axis to induce the release of interleukin (IL)-6, IL-10 and Vascular-Endothelial Growth Factor (VEGF).
View Article and Find Full Text PDFHuman Herpes Virus-6 (HHV-6), Epstein-Barr Virus (EBV) and Kaposi Sarcoma Herpes Virus (KSHV) are viruses that share with other member of the Herpesvirus family the capacity to interfere with the autophagic process. In this paper, mainly based on the findings of our laboratory, we describe how, through different mechanisms, these viruses converge in reducing autophagy to impair DC immune function and how, by infecting and dysregulating autophagy in different cell types, they promote the pathologies associated with their infection, from the neurodegenerative diseases such Alzheimer's disease to cancer.
View Article and Find Full Text PDFViral egress and autophagy are two mechanisms that seem to be strictly connected in Herpesviruses's biology. Several data suggest that the autophagic machinery facilitates the egress of viral capsids and thus the production of new infectious particles. In the Herpesvirus family, viral nuclear egress is controlled and organized by a well conserved group of proteins named Nuclear Egress Complex (NEC).
View Article and Find Full Text PDFInt J Cancer
December 2020
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of KS, an aggressive neoplasm that mainly occurs in immune-compromised patients. Spindle cells represent the main feature of this aggressive malignancy and arise from KSHV-infected endothelial cells undergoing endothelial to mesenchymal transition (EndMT), which changes their cytoskeletal composition and organization. As in epithelial to mesenchymal transition (EMT), EndMT is driven by transcription factors such as SNAI1 and ZEB1 and implies a cellular reprogramming mechanism regulated by several molecular pathways, particularly PI3K/AKT/MTOR.
View Article and Find Full Text PDFBr J Cancer
July 2020
Background: Kaposi's Sarcoma Herpesvirus (KSHV) is a gammaherpesvirus strongly linked to human cancer. The virus is also able to induce immune suppression, effect that contributes to onset/progression of the viral-associated malignancies. As KSHV may infect macrophages and these cells abundantly infiltrate Kaposi's sarcoma lesions, in this study we investigated whether KSHV-infection could affect macrophage polarisation to promote tumorigenesis.
View Article and Find Full Text PDFThe oncogenic gammaherpesvirus Epstein-Barr virus (EBV) immortalizes in vitro B lymphocytes into lymphoblastoid cell lines (LCLs), a model that gives the opportunity to explore the molecular mechanisms driving viral tumorigenesis. In this study, we addressed the potential of quercetin, a widely distributed flavonoid displaying antioxidant, anti-inflammatory, and anti-cancer properties, in preventing EBV-driven B cell immortalization. The results obtained indicated that quercetin inhibited thectivation of signal transducer and activator of transcription 3 (STAT3) induced by EBV infection and reduced molecules such as interleukin-6 (IL-6) and reactive oxidative species (ROS) known to be essential for the immortalization process.
View Article and Find Full Text PDFBackground: Peripheral facial nerve palsy (FNP) can have various causes, such as Bell's palsy or after surgery for acoustic neuroma. Rehabilitation is often required but there is no evidence that any rehabilitation approach is more efficacious than another.
Aim: The purpose of this research was to determine the effects of neurocognitive-rehabilitative approach through mirror-therapy (MT) and motor-imagery (MI), integrated into the traditional rehabilitation with mime-therapy and myofascial-approach.
The Tyr705 STAT3 constitutive activation, besides promoting PEL cell survival, contributes to the maintenance of viral latency. We found indeed that its de-phosphorylation by AG490 induced KSHV lytic cycle. Moreover, Tyr705 STAT3 de-phosphorylation, mediated by the activation of tyrosine phosphatases, together with the increase of Ser727 STAT3 phosphorylation contributed to KSHV lytic cycle induction by TPA.
View Article and Find Full Text PDFProgrammed death ligand 1 (PD-L1) (also called B7-H1) is a membrane immune-modulatory protein whose overexpression on the surface of tumor cells as well as APCs impairs T-cell-mediated killing. Viruses that establish chronic infections have developed a number of strategies to escape from immune recognition including the up-regulation of PD-L1. This study shows for the first time that the human oncovirus EBV infects human primary monocytes using HLA-DR and induced a strong up-regulation of PD-L1 expression on their surface.
View Article and Find Full Text PDF