The application of light in studying and influencing cellular behavior with improved temporal and spatial resolution remains a key objective in fields such as chemistry, physics, medicine, and engineering. In the brain, nonexcitable cells called astrocytes play essential roles in regulating homeostasis and cognitive function through complex calcium signaling pathways. Understanding these pathways is vital for deciphering brain physiology and neurological disorders like Parkinson's and Alzheimer's.
View Article and Find Full Text PDFAstrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores.
View Article and Find Full Text PDFInteroception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu.
View Article and Find Full Text PDFGraphene nanosheets are mechanically strong but flexible, electrically conductive and bio-compatible. Thus, due to these unique properties, they are being intensively studied as materials for the next generation of neural interfaces. Most of the literature focused on optimizing the interface between these materials and neurons.
View Article and Find Full Text PDFObjective: We studied the users of the Specialized Drug Distribution Program of the public health network.
Methods: A prospective cohort examined the elderly at two intervals of three years and included 30 patients in phase I and 16 in phase II. The methodology was composed of home visits, anthropometric, nutritional and hematological evaluation.
Introduction: elderly's malnutrition is linked, among other factors, to chronic-degenerative diseases, requiring an improvement in the clinical evaluation of nutritional status of this population. Studies have tried to find out new tools to assess aged-people nutritional status. One of most used scales to investigate nutritional status on geriatric patients is the Mini Nutritional Assessment (MNA).
View Article and Find Full Text PDFThis study aimed to evaluate the concentrations of copper, iron, and selenium in elderly people with Alzheimer disease (AD), comparing the same parameters in a paired group of healthy people, in order to verify if the amount of these metals may influence the cognitive impairment progression. Patients' cognitive impairment was evaluated by Clinical Dementia Rating (CDR). The elementary quantification of erythrocytes was performed by inductively coupled plasma mass spectrometry technique.
View Article and Find Full Text PDFBackground: The integrity of the brain histaminergic system is necessary for the unfolding of homeostatic and cognitive processes through the recruitment of alternative circuits with distinct temporal patterns. We recently demonstrated that the fat-sensing lipid mediator oleoylethanolamide indirectly activates histaminergic neurons to exerts its hypophagic effects. The present experiments investigated whether histaminergic neurotransmission is necessary also for the modulation of emotional memory induced by oleoylethanolamide in a contextual fear conditioning paradigm.
View Article and Find Full Text PDFHistaminergic neurons in the hypothalamic tuberomamillary nucleus (TMN) establish connections with virtually all brain areas. Recent evidence suggests that feeding-related motivation is correlated with the activation of a subpopulation of histamine neurons in the ventral TMN that project to hypothalamic and subcortical areas controlling feeding behaviour. Oleoylethanolamide (OEA) is a hypophagic lipid-amide released by the small intestine in response to daily fat intake that indirectly activates hypothalamic oxytocin-neurons in the paraventricular (PVN) and supraoptic (SON) nuclei.
View Article and Find Full Text PDF