Successful in vivo chelation treatment of iron(iii) overload pathologies requires that a significant fraction of the administered drug actually chelates the toxic metal. Increased mobilization of the iron(iii) in experiments on animals or humans, most often evaluated from urinary output, is usually used as an assessment tool for chelation therapy. Alternatively, the efficiency of a drug is estimated by calculating the complexing ability of a chelating agent towards Fe(iii).
View Article and Find Full Text PDFNew solid-phases for the binding, separation and extraction of perrhenate and pertechnetate (ReO(4)(-) and TcO(4)(-)) from water solutions have been developed from a selective molecular receptor. Host compounds being capable of encapsulating these oxoanions are of great interest. The azacryptand, containing two tripodal tetra-amine subunits covalently linked by p-xylyl spacers, is known to display high affinity for ReO(4)(-) and TcO(4)(-) in water.
View Article and Find Full Text PDF