Publications by authors named "Roberta B Peixoto"

As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential ().

View Article and Find Full Text PDF

Mangroves are one of the most important but threatened blue carbon ecosystems globally. Rapid urban growth has resulted in nutrient inputs and subsequent coastal eutrophication, associated with an enrichment in organic matter (OM) from algal and sewage sources and substantial changes in greenhouse gas (GHG) emissions. However, the effects of nitrogen (N) and phosphorus (P) enrichment on mangrove soil OM composition and GHG emissions, such as methane (CH) and carbon dioxide (CO), are still poorly understood.

View Article and Find Full Text PDF

Wetlands are the largest global source of atmospheric methane (CH), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH in the tropics, consistently underestimate the atmospheric burden of CH determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH emissions. Here we report CH fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin.

View Article and Find Full Text PDF

Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period.

View Article and Find Full Text PDF

Natural and human-induced controls on carbon dioxide (CO(2)) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO(2) (pCO(2)) that are still poorly understood. Here we assessed the strength of N control on pCO(2) in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments.

View Article and Find Full Text PDF