Publications by authors named "Robert-de-Saint-Vincent M"

Airway mucus works as a protective barrier in the human body, as it entraps pathogens that will be later cleared from the airways by ciliary transport or by coughing, thus featuring the rheological properties of a highly stretchable gel. Nonetheless, the study of these physical barrier as well as transport properties remains limited due to the restricted and invasive access to lungs and bronchi to retrieve mucus and to the poor repeatability inherent to native mucus samples. To overcome these limits, we report on a biobased synthetic mucus prepared from snail slime and multibranched thiol cross-linker, which are able to establish disulfide bonds, in analogy with the disulfide bonding of mucins, and therefore build viscoelastoplastic hydrogels.

View Article and Find Full Text PDF

Intrapulmonary percussive ventilation (IPV) has been postulated to enhance mucociliary clearance by improving tracheobronchial sputum rheological properties. The IPV effects on linear (viscoelasticity) and non-linear (flowing) rheological properties of 40 sputum samples collected from 19 patients with muco-obstructive lung diseases were investigated ex-vivo. Each sputum sample was split into 4 aliquots.

View Article and Find Full Text PDF

Background: Preterm-born children are at risk of behavioral disorders and the systematic assessment of these disorders remains a challenge. Questions remain about the accuracy of self-reported parent questionnaires and the real everyday life behavior of the child.

Aim: To evaluate the association between SDQ reported by parents in the preterm and behavioral difficulties in the everyday school life environment reported by teacher.

View Article and Find Full Text PDF

The rheology of sputum is viewed as a powerful emerging biophysical marker for monitoring muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). However, there is no unified practice to process sputa from collection to analysis, which can lead to highly variable, and sometimes inconsistent results. The main objective of this study is to bring light into the handling of sputum samples to establish a standardised and robust protocol before rheological measurements.

View Article and Find Full Text PDF

Spontaneous symmetry breaking is a property of Hamiltonian equilibrium states which, in the thermodynamic limit, retain a finite average value of an order parameter even after a field coupled to it is adiabatically turned off. In the case of quantum spin models with continuous symmetry, we show that this adiabatic process is also accompanied by the suppression of the fluctuations of the symmetry generator-namely, the collective spin component along an axis of symmetry. In systems of S=1/2 spins or qubits, the combination of the suppression of fluctuations along one direction and of the persistence of transverse magnetization leads to spin squeezing-a much sought-after property of quantum states, both for the purpose of entanglement detection as well as for metrological uses.

View Article and Find Full Text PDF
Article Synopsis
  • Mucus properties in lung diseases like asthma and cystic fibrosis are altered due to factors like excessive mucus secretion and airway dehydration, impacting respiratory function.
  • A new benchtop device called Rheomuco can quickly and easily measure the viscoelastic properties of mucus, providing results in under 5 minutes, which is beneficial for clinical assessments.
  • The study validated the device's performance against traditional methods and demonstrated its ability to detect significant changes in mucus consistency, highlighting its potential for optimizing treatments with mucoactive drugs.
View Article and Find Full Text PDF

Bronchial diseases are characterised by the weak efficiency of mucus transport through the lower airways, leading in some cases to the muco-obstruction of bronchi. It has been hypothesised that this loss of clearance results from alterations in the mucus rheology, which are reflected in sputum samples collected from patients, making sputum rheology a possible biophysical marker of these diseases and their evolution. However, previous rheological studies have focused on quasi-static viscoelastic (linear storage and loss moduli) properties only, which are not representative of the mucus mobilisation within the respiratory tract.

View Article and Find Full Text PDF

Using two-photon Bragg spectroscopy, we study the energy of particlelike excitations in a strongly interacting homogeneous Bose-Einstein condensate, and observe dramatic deviations from Bogoliubov theory. In particular, at large scattering length a the shift of the excitation resonance from the free-particle energy changes sign from positive to negative. For an excitation with wave number q, this sign change occurs at a≈4/(πq), in agreement with the Feynman energy relation and the static structure factor expressed in terms of the two-body contact.

View Article and Find Full Text PDF

The accumulation of colloidal particles to build dense structures from dilute suspensions may follow distinct routes. The mechanical, structural and geometrical properties of these structures depend on local hydrodynamics and colloidal interactions. Using model suspensions flowing into microfabricated porous obstacles, we investigate this interplay by tuning both the flow pattern and the ionic strength.

View Article and Find Full Text PDF

We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional Bose gas with tunable interactions. Over a wide range of interaction strengths we find excellent agreement with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition. This allows us to quantitatively show, without any free parameters, that the interaction-driven BKT transition smoothly converges onto the purely quantum-statistical Bose-Einstein condensation transition in the limit of vanishing interactions.

View Article and Find Full Text PDF

We experimentally study the full counting statistics of few-body Rydberg aggregates excited from a quasi-one-dimensional atomic gas. We measure asymmetric excitation spectra and increased second and third order statistical moments of the Rydberg number distribution, from which we determine the average aggregate size. Estimating rates for different excitation processes we conclude that the aggregates grow sequentially around an initial grain.

View Article and Find Full Text PDF

Electronically highly excited (Rydberg) atoms experience quantum state-changing interactions similar to Förster processes found in complex molecules, offering a model system to study the nature of dipole-mediated energy transport under the influence of a controlled environment. We demonstrate a nondestructive imaging method to monitor the migration of electronic excitations with high time and spatial resolution, using electromagnetically induced transparency on a background gas acting as an amplifier. The continuous spatial projection of the electronic quantum state under observation determines the many-body dynamics of the energy transport.

View Article and Find Full Text PDF

We observe individual dark-state polaritons as they propagate through an ultracold atomic gas involving Rydberg states coupled via an electromagnetically induced transparency resonance. Strong long-range interactions between Rydberg excitations give rise to a blockade between polaritons, resulting in large optical nonlinearities and modified polariton number statistics. By combining optical imaging and high-fidelity detection of the Rydberg polaritons we investigate both aspects of this coupled atom-light system.

View Article and Find Full Text PDF

We report the sudden and spontaneous evolution of an initially correlated gas of repulsively interacting Rydberg atoms to an ultracold plasma. Under continuous laser coupling we create a Rydberg ensemble in the strong blockade regime, which at longer times undergoes an ionization avalanche. By combining optical imaging and ion detection, we access the full information on the dynamical evolution of the system, including the rapid increase in the number of ions and a sudden depletion of the Rydberg and ground state densities.

View Article and Find Full Text PDF

We experimentally investigate the thermocapillary migration induced by local laser heating of the advancing front of a growing droplet confined in a microfluidic channel. When heating implies an effective increase in interfacial tension, the laser behaves as a "soft door" whose stiffness can be tuned via the optical parameters (beam power and waist). The light-driven thermocapillary velocity of a growing droplet, which opposes the basic flow, is characterized for different types of fluid injection, either pressure or flow rate driven, and various channel aspect ratios.

View Article and Find Full Text PDF

We propose a new all-optical method to image individual Rydberg atoms embedded within dense gases of ground state atoms. The scheme exploits interaction-induced shifts on highly polarizable excited states of probe atoms, which can be spatially resolved via an electromagnetically induced transparency resonance. Using a realistic model, we show that it is possible to image individual Rydberg atoms with enhanced sensitivity and high resolution despite photon-shot noise and atomic density fluctuations.

View Article and Find Full Text PDF

We study the horizontal expansion of vertically confined ultracold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by an optical speckle at an angle of 30° with respect to the horizontal plane, resulting in an effective anisotropy of the correlation lengths of a factor of 2 in that plane.

View Article and Find Full Text PDF

We demonstrate a compact laser source suitable for trapping and cooling potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows us to generate the two required frequencies for cooling in a simple and robust apparatus.

View Article and Find Full Text PDF