Publications by authors named "Robert-Jan den Tex"

We reconstruct the phylogeny of all recognized species of the tropical forest associated Asian barbets based on mitochondrial and nuclear sequence data and test for the monophyly of species and genera. Tropical regions are well known for their extraordinarily high levels of biodiversity, but we still have a poor understanding of how this richness was generated and maintained through evolutionary time. Multiple theoretical frameworks have been developed to explain this diversity, including the Pleistocene pump hypothesis and the museum hypothesis.

View Article and Find Full Text PDF

The application of ancient DNA techniques is subject to many problems caused primarily by low quality and by low quantity of DNA. For these reasons most studies employing ancient DNA rely on the characterization of mitochondrial DNA, which is present in many more copies per cell than nuclear DNA and hence more copies are likely to survive. We used universal and taxon specific mitochondrial primers to amplify DNA from museum specimens, and found many instances where the amplification of nuclear copies of the mitochondrial gene (numts) instead of the targeted mitochondrial fragment had occurred.

View Article and Find Full Text PDF

Tropical rainforests are well known for their extraordinarily high levels of biodiversity. The origin of this species richness is still debated. For instance, the museum hypothesis states that over evolutionary time more and more species will accumulate with relatively few extinctions.

View Article and Find Full Text PDF

We recently reconstructed the troublesome swiftlet phylogeny using cytochrome-b mitochondrial DNA sequences. The relationship of the giant swiftlet (Hydrochous gigas) with swiftlets of the genus Aerodramus was, however, unresolved. In an attempt to clarify this issue, we now incorporated mitochondrial 12S rRNA and nuclear beta-fibrinogen intron 7 nuclear DNA sequences with the cyt-b sequences of six swiftlet, two swift, and one hummingbird outgroup species.

View Article and Find Full Text PDF