Publications by authors named "Robert van de Ven"

Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4 T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4 T cell differentiation, and reduced cytokine production.

View Article and Find Full Text PDF

Invasive lobular breast carcinoma (ILC) is characterized by proliferative indolence and long-term latency relapses. This study aimed to identify how disseminating ILC cells control the balance between quiescence and cell cycle re-entry. In the absence of anchorage, ILC cells undergo a sustained cell cycle arrest in G0/G1 while maintaining viability.

View Article and Find Full Text PDF
Article Synopsis
  • * BCAA catabolism is crucial for activating the key adipogenic regulator PPARγ and is facilitated by the mitochondrial protein SIRT4, which enhances BCAA breakdown through its action on MCCC.
  • * SIRT4 levels are reduced in adipose tissue of diabetic mice, hinting at its potential role in metabolic disorders by affecting BCAA metabolism during the early stages of fat cell development.
View Article and Find Full Text PDF

Metastatic breast cancer is responsible for most breast cancer-related deaths. Disseminated cancer cells have developed an intrinsic ability to resist anchorage-dependent apoptosis (anoikis). Anoikis is caused by the absence of cellular adhesion, a process that underpins lumen formation and maintenance during mammary gland development and homeostasis.

View Article and Find Full Text PDF

Metastasis remains the leading cause of cancer mortality, and reactive oxygen species (ROS) signaling promotes the metastatic cascade. However, the molecular pathways that control ROS signaling relevant to metastasis are little studied. Here, we identify SIRT3, a mitochondrial deacetylase, as a regulator of cell migration via its control of ROS signaling.

View Article and Find Full Text PDF

Local modulation of the actin cytoskeleton is essential for the initiation and maintenance of strong homotypic adhesive interfaces between neighboring cells. The epithelial adherens junction (AJ) fulfils a central role in this process by mediating E-cadherin interactions and functioning as a signaling scaffold to control the activity of the small GTPase RhoA and subsequent actomyosin contractility. Interestingly, a number of regulatory proteins that modulate RhoA activity at the AJ also control RhoA during cytokinesis, an actomyosin-dependent process that divides the cytoplasm to generate two daughter cells at the final stages of mitosis.

View Article and Find Full Text PDF

Advancing age is the major risk factor for the development of chronic diseases and is accompanied by changes in metabolic processes and mitochondrial dysfunction. Mitochondrial sirtuins (SIRT3-5) are part of the sirtuin family of NAD-dependent deacylases and ADP-ribosyl transferases. The dependence on NAD links sirtuin enzymatic activity to the metabolic state of the cell, poising them as stress sensors.

View Article and Find Full Text PDF

Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis.

View Article and Find Full Text PDF

The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth.

View Article and Find Full Text PDF

E-cadherin inactivation underpins the progression of invasive lobular breast carcinoma (ILC). In ILC, p120-catenin (p120) translocates to the cytosol where it controls anchorage independence through the Rho-Rock signaling pathway, a key mechanism driving tumor growth and metastasis. We now demonstrate that anchorage-independent ILC cells show an increase in nuclear p120, which results in relief of transcriptional repression by Kaiso.

View Article and Find Full Text PDF

The epithelial adherens junction is an E-cadherin-based complex that controls tissue integrity and is stabilized at the plasma membrane by p120-catenin (p120, also known as CTNND1). Mutational and epigenetic inactivation of E-cadherin has been strongly implicated in the development and progression of cancer. In this setting, p120 translocates to the cytosol where it exerts oncogenic properties through aberrant regulation of Rho GTPases, growth factor receptor signaling and derepression of Kaiso (also known as ZBTB33) target genes.

View Article and Find Full Text PDF

Background: Yes Associated Protein (YAP) has been implicated in the control of organ size by regulating cell proliferation and survival. YAP is a transcriptional coactivator that controls cellular responses through interaction with TEAD transcription factors in the nucleus, while its transcriptional functions are inhibited by phosphorylation-dependent translocation to the cytosol. YAP overexpression has been associated with different types of cancer, such as lung, skin, prostate, ovary and liver cancer.

View Article and Find Full Text PDF

Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer.

View Article and Find Full Text PDF

Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCF(βTrCP) (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCF(βTrCP)-directed Lys(48) polyubiquitination. We now show that also Lys(63)-linked ubiquitin chain formation is required for GHR endocytosis.

View Article and Find Full Text PDF