Ultrashort-chain perfluorinated carboxylic acids (PFCAs) are receiving more attention due to their ever-increasing presence in the environment. Methods have been established for the analysis of short- and long-chain PFCAs, while robust quantitation of ultrashort-chain species is scarce. Here, we develop a novel derivatization method using diphenyl diazomethane for quantitation of C2-C14 PFCAs in aqueous matrices.
View Article and Find Full Text PDFWith legalization and decriminalization of cannabis in many parts of the world comes the need for rapid separation and quantitation of the psychoactive ingredients. Here, we demonstrate the use of differential mobility spectrometry (DMS) mass spectrometry for the analysis of five cannabinoid molecules: the isomer set of Δ-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabichromine (CBC), and the (-)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) isomer pair. Analytes were investigated under a variety of gas-phase environments to identify optimal separation conditions based on ion differential mobilities.
View Article and Find Full Text PDFDust analysis provides a means to assess the degree of exposure of humans in an indoor environment to various contaminant classes such as flame retardants, pesticides and others. There is increasing interest in non-targeted acquisitions using high resolution mass spectrometry (HRMS) to better capture the contaminant profile. However, these studies are confronted with the challenge of assessing confidence in proposed identifications, particularly when authentic standards are not available.
View Article and Find Full Text PDFSince 2001, twenty-eight halogenated groups of persistent organic pollutants (POPs) have been banned or restricted by the Stockholm Convention. Identifying new POPs among the hundreds of thousands of anthropogenic chemicals is a major challenge that is increasingly being met by state-of-the-art mass spectrometry (MS). The first step to identification of a contaminant molecule (M) is the determination of the type and number of its constituent elements, viz.
View Article and Find Full Text PDFGas chromatography (GC) and mass spectrometry (MS) are powerful, complementary techniques for the analysis of environmental toxicants. Currently, most GC-MS instruments employ electron ionization under vacuum, but the concept of coupling GC to atmospheric pressure ionization (API) is attracting revitalized interest. API conditions are inherently compatible with a wide range of ionization techniques as well high carrier gas flows that enable fast GC separations.
View Article and Find Full Text PDFBiomass burning is a known source of brown carbon aerosol in the atmosphere. We collected filter samples of biomass-burning emissions at three locations in Canada and the United States with transport times of 10 h to >3 days. We analyzed the samples with size-exclusion chromatography coupled to molecular absorbance spectroscopy to determine absorbance as a function of molecular size.
View Article and Find Full Text PDF