Selenium is an essential inorganic compound in human and animal nutrition, involved in the proper functioning of the body. As a micronutrient, it actively contributes to the regulation of various metabolic activities, i.e.
View Article and Find Full Text PDFThe importance of understanding the mercury (II) ion interactions with thymine-rich DNA sequences is the reason for multiple comparative investigations carried out with the use of optical detection techniques directly in the depth of solution. However, the results of such investigations have limited applicability in the interpretation of the Hg binding phenomenon by DNA sequences in thin, interfacial (electrode/solution), self-organized monolayers immobilized on polarizable surfaces, often used for sensing purposes in electrochemical biosensors. Overlooking the careful optimization of the measurement conditions is the source of discrepancies in the interpretation of the registered electrochemical signal.
View Article and Find Full Text PDFTo meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements.
View Article and Find Full Text PDFThe abnormal concentration of microRNAs (miRNAs) can be associated with occurrence of various diseases including cancer, cardiovascular and neurodegenerative, hence they can be considered as potential biomarkers. An attractive approach could be the application of electrochemical methods, particularly where hybridization event between single-stranded deoxyribonucleic acid (ssDNA) or peptide-nucleic acid (PNA) with miRNA strand happens. Recently, the use of various nanomaterials such as gold nanoparticles, graphene oxide, quantum dots as well as catalyzed hairpin assembly or hybridization chain reaction were proposed to further enhance the performance of elaborated sensors.
View Article and Find Full Text PDFRecently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices.
View Article and Find Full Text PDFRapid and accurate detection and identification of pathogens in clinical samples is essential for all infection diseases. However, in the case of epidemics, it plays a key role not only in the implementation of effective therapy but also in limiting the spread of the epidemic. In this study, we present the application of two nucleic acid isothermal amplification methods-reverse transcription helicase dependent amplification (RT-HDA) and reverse transcription loop-mediated amplification (RT-LAMP)-combined with lateral flow assay as the tools for the rapid detection of SARS-CoV-2, the etiological agent of COVID-19, which caused the ongoing global pandemic.
View Article and Find Full Text PDFNucleic acid extraction and purification are crucial steps in sample preparation for multiple diagnostic procedures. Routine methodologies of DNA isolation require benchtop equipment (e.g.
View Article and Find Full Text PDFThe presented study is focused on the development of electrochemical genosensor for detection of tox gene fragment of toxigenic Corynebacterium diphtheriae strain. Together with our previous studies it fulfils the whole procedure for fast and accurate diagnostic of diphtheria at its early stage of infection with the use of electrochemical methods. The developed DNA sensor potentially can be used in more sophisticated portable device.
View Article and Find Full Text PDFThis paper focuses on the current state of art as well as on future trends in electrochemical aptasensors application in medical diagnostics. The origin of aptamers is presented along with the description of the process known as SELEX. This is followed by the description of the broad spectrum of aptamer-based sensors for the electrochemical detection of various diagnostically relevant analytes, including metal cations, abused drugs, neurotransmitters, cancer, cardiac and coagulation biomarkers, circulating tumor cells, and viruses.
View Article and Find Full Text PDFPossible risks stemming from the employment of novel, micrometer-thin printed electrodes for direct current neural stimulation are discussed. To assess those risks, electrochemical methods are used, including cyclic voltammetry, square-wave voltammetry, and electrochemical impedance spectroscopy. Experiments were conducted in non-deoxidized phosphate-buffered saline to better emulate living organism conditions.
View Article and Find Full Text PDFMost point-of-care tests (POCT) use swabs for sampling and/or for applying a sample on the test. A variety of swabs differing in tip materials is commercially available. Different tip materials have different chemical and physical characteristics which might influence the specimen collection and release.
View Article and Find Full Text PDFThe immunoassay technology is of particular importance for both the environmental industry and clinical analysis. Biosensors, with the sensing layer based on antibodies or their fragments, offer high selectivity and short detection times. However, analytical devices where the electrochemical signal corresponds to changes in the interfacial region (sensing layer/electrode surface) are very susceptible to any nonspecific adsorption.
View Article and Find Full Text PDFA micro-electrochemical reaction cell was coupled to an electrospray mass spectrometer in order to track redox transformations for two representative medicinal gold compounds - i.e. [(2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranosato-S)(triethylphosphine)gold(I)] and [Au(bipy-H)(OH)][PF] (where bipy-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine), known as Auranofin and Aubipy respectively - in parallel to square wave voltammetry (SWV) measurements.
View Article and Find Full Text PDFIn continuation of previous work, we present a new promising DNA carrier, OO4, a highly effective peptide-mimicking lysine-based cationic lipid. The structural characteristics of the polynucleotide carrier system OO4 mixed with the commonly used co-lipid DOPE and the saturated phospholipid DPPE have been studied in two-dimensional and three-dimensional model systems to understand their influence on the physical-chemical properties. The phase behavior of pure OO4 and its mixtures with DOPE and DPPE was studied at the air-water interface using a Langmuir film balance combined with infrared reflection-absorption spectroscopy.
View Article and Find Full Text PDFThe recently developed methods of nucleic acids isothermal amplification are promising tools for point-of-care diagnostics and in the field detection of pathogenic microorganisms. However, application of these methods outside a laboratory faces some challenges such as the rapid and sensitive detection of amplified products and the absence of cross-reactivity with genetically related microorganisms. In the presented study we compared three methods of isothermal DNA amplification loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA) and thermophilic helicase-dependent isothermal DNA amplification (tHDA), for detection of highly dangerous pathogens, such as Bacillus anthracis, Francisella tularensis and Yersinia pestis, and combined them with lateral flow dipsticks for the rapid visualization of amplified products.
View Article and Find Full Text PDFThe possibility of utilization of gold electrodes modified with short guanine-rich ssDNA probes for determination of Pb(2+) was examined. Interaction between guanine residues and lead ion followed by formation of G-quadruplex structures was confirmed by electrochemical impedance spectroscopy investigations. An external cationic redox label, methylene blue, was employed in voltammetric measurements for analytical signal generation.
View Article and Find Full Text PDFThe present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution.
View Article and Find Full Text PDFThe evaluation of novel electrochemically active label for electrochemical detection of DNA hybridization is presented. Metallacarborane units modified with iron, cobalt or chromium were investigated. The value of redox potential and relatively strong current signal facilitate usage of Fe-carborane as marker covalently attached to the ssDNA.
View Article and Find Full Text PDFThe feasibility of using gold electrodes modified with short-chain ssDNA oligonucleotides for determination of uranyl cation is examined. Interaction between UO(2)(2+) and proposed recognition layer was studied by means of voltammetric and quartz crystal microbalance measurements. It was postulated that ssDNA recognition layer functions via strong binding of UO(2)(2+) to phosphate DNA backbone.
View Article and Find Full Text PDFThe backside contact, silicon-based transducers with vacuum-deposited gold layer (BSC) are evaluated as the base for electrochemical biosensors construction. Their comparison with commercially available transducers with screen printed gold and traditional gold disc electrode is reported. To determine the advantages and disadvantages of each of gold surfaces mentioned above, the 6-(ferrocenyl)-hexanethiol was used as the indicator.
View Article and Find Full Text PDF