Publications by authors named "Robert Whitcomb"

In 2016 the United States Centers for Disease Control and Prevention (CDC) established a Nuclear/Radiological Training and Exercise Preparedness (TEP) Program to better prepare its workforce to respond to a nuclear/radiological incident. The TEP program is comprised of staff across CDC programs with a variety of specialties such as epidemiologists, clinicians, data managers, communicators, environmental health specialists, at risk population specialists and health physicists. Key TEP activities include the preparation of the CDC Nuclear/Radiological Incident Response and Recovery Annex that describes CDC's roles and responsibilities in the event of a nuclear/radiological incident; establishment of an Incident Management System (IMS) structure to reflect an agency-wide response consistent with CDC's All Hazards Plan; and completion of nuclear/radiological public health preparedness and response training and exercises.

View Article and Find Full Text PDF

In 2015-16, the US Department of Health and Human Services led 23 US Government (USG) agencies including the Centers for Disease Control and Prevention (CDC), and more than 120 subject matter experts in conducting an in-depth review of the US core public health capacities and evaluation of the country's compliance with the International Health Regulations using the Joint External Evaluation (JEE) methodology. This two-part process began with a detailed 'self-assessment' followed by a comprehensive independent, external evaluation conducted by 15 foreign assessors. In the Radiation Emergencies Technical Area, on a scale from 1-lowest to 5-highest, the assessors concurred with the USG self-assessed score of 3 in both of the relevant indicators.

View Article and Find Full Text PDF

On 11 March 2011, northern Japan was struck by first a magnitude 9.0 earthquake off the eastern coast and then by an ensuing tsunami. At the Fukushima Dai-ichi Nuclear Power Plant (NPP), these twin disasters initiated a cascade of events that led to radionuclide releases.

View Article and Find Full Text PDF

Resilience and the ability to mitigate the consequences of a nuclear incident are enhanced by (1) effective planning, preparation and training; (2) ongoing interaction, formal exercises, and evaluation among the sectors involved; (3) effective and timely response and communication; and (4) continuous improvements based on new science, technology, experience, and ideas. Public health and medical planning require a complex, multi-faceted systematic approach involving federal, state, local, tribal, and territorial governments; private sector organizations; academia; industry; international partners; and individual experts and volunteers. The approach developed by the U.

View Article and Find Full Text PDF

During routine screening in 2011, US Customs and Border Protection (CBP) identified 2 persons with elevated radioactivity. CBP, in collaboration with Los Alamos National Laboratory, informed the Food and Drug Administration (FDA) that these people could have increased radiation exposure as a result of undergoing cardiac Positron Emission Tomography (PET) scans several months earlier with rubidium Rb 82 chloride injection from CardioGen-82. We conducted a multistate investigation to assess the potential extent and magnitude of radioactive strontium overexposure among patients who had undergone Rb 82 PET scans.

View Article and Find Full Text PDF

This article summarizes major points from a newly released guide published online by the Office of the Assistant Secretary for Preparedness and Response (ASPR). The article reviews basic principles about radiation and its measurement, short-term and long-term effects of radiation, and medical countermeasures as well as essential information about how to prepare for and respond to a nuclear detonation. A link is provided to the manual itself, which in turn is heavily referenced for readers who wish to have more detail.

View Article and Find Full Text PDF

On November 23, 2006, former Russian military intelligence officer Alexander Litvinenko died in a London hospital. Authorities determined he was deliberately poisoned with the radionuclide Polonium-210 (210Po). Police subsequently discovered that those involved in this crime had--apparently inadvertently--spread 210Po over many locations in London.

View Article and Find Full Text PDF

Following a radiation emergency, evacuated, sheltered or other members of the public would require monitoring for external and/or internal contamination and, if indicated, decontamination. In addition, the potentially-impacted population would be identified for biodosimetry/bioassay or needed medical treatment (chelation therapy, cytokine treatment, etc.) and prioritized for follow-up.

View Article and Find Full Text PDF

An environmental survey of tabanid host spiroplasma carriage was undertaken at 10 collection sites in Australia during February 1999. A total of 164 tabanid flies, representing 27 species, were collected and sustainable spiroplasma isolations were made from 48 of the flies. The morphology of the cultured spiroplasmas, as observed in M1D medium under dark-field microscopy, was typical of either (i) Apis group spiroplasmas (relatively thick cells (approximately 150 nm) with six or more turns) or (ii) chrysopicola-syrphidicola-TAAS-1 clade spiroplasmas (narrower, often much shorter cells) serologically related to Spiroplasma serogroup VIII.

View Article and Find Full Text PDF

Surface serology is an important determinant in Spiroplasma systematics. Reciprocal antigen/antibody reactions between spiroplasmas and individual antisera delineate the 38 described groups and species. However, reciprocal serology is impractical for large-scale studies.

View Article and Find Full Text PDF

A growing body of audience research reveals medical personnel in hospitals are unprepared for a large-scale radiological emergency such as a terrorist event involving radioactive or nuclear materials. Also, medical personnel in hospitals lack a basic understanding of radiation principles, as well as diagnostic and treatment guidelines for radiation exposure. Clinicians have indicated that they lack sufficient training on radiological emergency preparedness; they are potentially unwilling to treat patients if those patients are perceived to be radiologically contaminated; and they have major concerns about public panic and overloading of clinical systems.

View Article and Find Full Text PDF

Medical health physicists working in a clinical setting will have a number of key roles in the event of a nuclear or radiological emergency, such as a terrorist attack involving a radiological dispersal device or an improvised nuclear device. Their first responsibility, of course, is to assist hospital administrators and facility managers in developing radiological emergency response plans for their facilities and train staff prior to an emergency. During a hospital's response to a nuclear or radiological emergency, medical health physicists may be asked to (1) evaluate the level of radiological contamination in or on incoming victims; (2) help the medical staff evaluate and understand the significance to patient and staff of the levels of radioactivity with which they are dealing; (3) orient responding medical staff with principles of dealing with radioactive contaminants; (4) provide guidance to staff on decontamination of patients, facilities, and the vehicles in which patients were transported; and (5) assist local public health authorities in monitoring people who are not injured but who have been or are concerned that they may have been exposed to radioactive materials or radiation as a result of the incident.

View Article and Find Full Text PDF

Minimal standards for novel species of the class Mollicutes (trivial term, mollicutes), last published in 1995, require revision. The International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Mollicutes proposes herein revised standards that reflect recent advances in molecular systematics and the species concept for prokaryotes. The mandatory requirements are: (i) deposition of the type strain into two recognized culture collections, preferably located in different countries; (ii) deposition of the 16S rRNA gene sequence into a public database, and a phylogenetic analysis of the relationships among the 16S rRNA gene sequences of the novel species and its neighbours; (iii) deposition of antiserum against the type strain into a recognized collection; (iv) demonstration, by using the combination of 16S rRNA gene sequence analyses, serological analyses and supplementary phenotypic data, that the type strain differs significantly from all previously named species; and (v) assignment to an order, a family and a genus in the class, with an appropriate specific epithet.

View Article and Find Full Text PDF

Spiroplasma species (Mollicutes: Spiroplasmataceae) are associated with a wide variety of insects, and serology has classified this genus into 34 groups, 3 with subgroups. The 16S rRNA gene has been used for phylogenetic analysis of spiroplasmas, but this approach is uninformative for group VIII because the serologically distinct subgroups generally have similarity coefficients >0.990.

View Article and Find Full Text PDF

The genus Spiroplasma (helical mollicutes: Bacteria: Firmicutes: Mollicutes: Entomoplasmatales: Spiroplasmataceae) is associated primarily with insects. The Mycoplasma mycoides cluster (sensu Weisburg et al. 1989 and Johansson and Pettersson 2002) is a group of mollicutes that includes the type species - Mycoplasma mycoides - of Mycoplasmatales, Mycoplasmataceae and Mycoplasma.

View Article and Find Full Text PDF

Estimates of 137Cs deposition caused by fallout originating from nuclear weapons testing in the Marshall Islands have been estimated for several locations in the Marshall Islands. These retrospective estimates are based primarily on historical exposure rate and gummed film measurements. The methods used to reconstruct these deposition estimates are similar to those used in the National Cancer Institute study for reconstructing 131I deposition from the Nevada Test Site.

View Article and Find Full Text PDF