Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures.
View Article and Find Full Text PDFHere we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by early intraneuronal amyloid-β (Aβ) accumulation, extracellular deposition of Aβ peptides, and intracellular hyperphosphorylated tau aggregates. These lesions cause dendritic and synaptic alterations and induce an inflammatory response in the diseased brain. Although the neuropathological characteristics of AD have been known for decades, the molecular mechanisms causing the disease are still under investigation.
View Article and Find Full Text PDFNormal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched.
View Article and Find Full Text PDFBackground: Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome.
View Article and Find Full Text PDFOne of the central research questions on the etiology of Alzheimer's disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits.
View Article and Find Full Text PDFObjectives: To better understand the molecular pathogenesis of T-cell large granular lymphocyte leukemia (T-LGL), we decided to search for those genetic alterations in T-LGL patients and MOTN-1 cell line (established from T-LGL patient) that have an impact on gene expression and as a result can influence cell biology.
Methods: Multicolor fluorescence in situ hybridization (mFISH) analysis of the MOTN-1 cell line was performed as well as paired-end next-generation sequencing (NGS; Illumina HiSeq2000) of this cell line and one T-LGL patient. In addition, chosen 6q region was characterized in three T-LGL patients using high-resolution comparative genomic hybridization (FT-CGH) and LM-PCR.
The envisioned clinical and industrial use of human pluripotent stem cells and their derivatives has given major momentum to the establishment of suspension culture protocols that enable the mass production of cells. Understanding molecular changes accompanying the transfer from adherent to suspension culture is of utmost importance because this information can have a direct effect on the development of optimized culture conditions. In this study we assessed the gene expression of human embryonic stem cells and induced pluripotent stem cells grown in surface-adherent culture (two-dimensional) versus free-floating suspension culture spheroids (three-dimensional).
View Article and Find Full Text PDFWith a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.
View Article and Find Full Text PDFObjective: We are often asked to evaluate the postoperative elbow using MRI. In this article, we present both the normal appearance of the reconstructed ulnar collateral ligament (UCL) and a spectrum of UCL graft abnormalities at MR arthrography.
Conclusion: The UCL is the primary medial stabilizer of the elbow during flexion and is susceptible to injury, particularly in overhead throwing athletes.
Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy.
View Article and Find Full Text PDFMental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR).
View Article and Find Full Text PDFWe compare the results of three different assembler programs, Celera, Phrap and Mira2, for the same set of about a hundred thousand Sanger reads derived from an unknown bacterial genome. In difference to previous assembly comparisons we do not focus on speed of computation and numbers of assembled contigs but on how the different sequence assemblies agree by content. Threefold consistently assembled genome regions are identified in order to estimate a lower bound of erroneously identified single nucleotide polymorphisms (SNP) caused by nothing but the process of mathematical sequence assembly.
View Article and Find Full Text PDF