Front Biosci (Schol Ed)
January 2013
Logical models for cellular signaling networks are recently attracting wide interest: Their ability to integrate qualitative information at different biological levels, from receptor-ligand interactions to gene-regulatory networks, is becoming essential for understanding complex signaling behavior. We present an overview of Boolean modeling paradigms and discuss in detail an approach based on causal logical interactions that yields descriptive and predictive signaling network models. Our approach offers a mathematically well-defined concept, improving the efficiency of analytical tools to meet the demand of large-scale data sets, and can be extended into various directions to include timing information as well as multiple discrete values for components.
View Article and Find Full Text PDFChemical synapses are highly specialized cell-cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal.
View Article and Find Full Text PDFChanges in synaptic efficacy underlying learning and memory processes are assumed to be associated with alterations of the protein composition of synapses. Here, we performed a quantitative proteomic screen to monitor changes in the synaptic proteome of four brain areas (auditory cortex, frontal cortex, hippocampus striatum) during auditory learning. Mice were trained in a shuttle box GO/NO-GO paradigm to discriminate between rising and falling frequency modulated tones to avoid mild electric foot shock.
View Article and Find Full Text PDFT cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling.
View Article and Find Full Text PDFBackground: Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable.
View Article and Find Full Text PDFWe propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models.
View Article and Find Full Text PDFWe apply a mathematical algorithm which processes discrete time series data to generate a complete list of Petri net structures containing the minimal number of nodes required to reproduce the data set. The completeness of the list as guaranteed by a mathematical proof allows to define a minimal set of experiments required to discriminate between alternative network structures. This in principle allows to prove all possible minimal network structures by disproving all alternative candidate structures.
View Article and Find Full Text PDFCellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest.
View Article and Find Full Text PDF