Nat Rev Drug Discov
October 2024
CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces.
View Article and Find Full Text PDFAlternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) includes a set of highly heritable neurodevelopmental syndromes characterized by social and communication impairment, repetitive behaviour, and intellectual disability. Although mutations in multiple genes have been associated to ASD, most patients lack detectable genetic alterations. For this reason, environmental factors are commonly thought to also contribute to ASD aetiology.
View Article and Find Full Text PDFAn average shotgun proteomics experiment detects approximately 10,000 human proteins from a single sample. However, individual proteins are typically identified by peptide sequences representing a small fraction of their total amino acids. Hence, an average shotgun experiment fails to distinguish different protein variants and isoforms.
View Article and Find Full Text PDFDNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking.
View Article and Find Full Text PDFThe higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages.
View Article and Find Full Text PDFThe notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype.
View Article and Find Full Text PDFAlternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1.
View Article and Find Full Text PDFThe nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina.
View Article and Find Full Text PDFMany primate genes produce circular RNAs (circRNAs). However, the extent of circRNA conservation between closely related species remains unclear. By comparing tissue-specific transcriptomes across over 70 million years of primate evolution, we identify that within 3 million years circRNA expression profiles diverged such that they are more related to species identity than organ type.
View Article and Find Full Text PDFPrevious transcriptomic profiling studies have typically focused on separately analyzing mRNA expression, alternative splicing and alternative polyadenylation differences between cell and tissue types. However, the relative contribution of these three transcriptomic regulatory layers to cell type specification is poorly understood. This question is particularly relevant to neurons, given their extensive heterogeneity associated with brain location, morphology and function.
View Article and Find Full Text PDFTight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons.
View Article and Find Full Text PDFGlobal insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies.
View Article and Find Full Text PDFRegulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis).
View Article and Find Full Text PDFMicroexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons.
View Article and Find Full Text PDFBackground: The long introns of mammals are pools of evolutionary potential due to the multiplicity of sequences that permit the acquisition of novel exons. However, the permissibility of genes to this type of acquisition and its influence on the evolution of cell regulation is poorly understood.
Results: Here, we observe that human genes are highly permissive to the inclusion of novel exonic regions permitting the emergence of novel regulatory features.
Heredity has a major role in autism spectrum disorder (ASD), yet underlying causal genetic variants have been defined only in a fairly small subset of cases. The enormous genetic heterogeneity associated with ASD emphasizes the importance of identifying convergent pathways and molecular mechanisms that are responsible for this disorder. We review how recent transcriptomic analyses have transformed our understanding of pathway convergence in ASD.
View Article and Find Full Text PDFAlternative splicing (AS) is a widespread process underlying the generation of transcriptomic and proteomic diversity and is frequently misregulated in human disease. Accordingly, an important goal of biomedical research is the development of tools capable of comprehensively, accurately, and efficiently profiling AS. Here, we describe Whippet, an easy-to-use RNA-seq analysis method that rapidly-with hardware requirements compatible with a laptop-models and quantifies AS events of any complexity without loss of accuracy.
View Article and Find Full Text PDFAlternative splicing (AS) patterns have diverged rapidly during vertebrate evolution, yet the functions of most species- and lineage-specific splicing events are not known. We observe that mammalian-specific AS events are enriched in transcript sequences encoding intrinsically disordered regions (IDRs) of proteins, in particular those containing glycine/tyrosine repeats that mediate formation of higher-order protein assemblies implicated in gene regulation and human disease. These evolutionary changes impact nearly all members of the hnRNP A and D families of RNA binding proteins.
View Article and Find Full Text PDFNetworks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events.
View Article and Find Full Text PDFHigh-throughput RNA sequencing (RNA-seq) has revealed an enormous complexity of alternative splicing (AS) across diverse cell and tissue types. However, it is currently unknown to what extent repertoires of splice-variant transcripts are translated into protein products. Here, we surveyed AS events engaged by the ribosome.
View Article and Find Full Text PDFGene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.
View Article and Find Full Text PDFProgression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes.
View Article and Find Full Text PDF