The swimming larvae of many marine animals identify a location on the sea floor to undergo metamorphosis based on the presence of specific bacteria. Although this microbe-animal interaction is critical for the life cycles of diverse marine animals, what types of biochemical cues from bacteria that induce metamorphosis has been a mystery. Metamorphosis of larvae of the tubeworm is induced by arrays of phage tail-like contractile injection systems, which are released by the bacterium .
View Article and Find Full Text PDFEliminating or silencing a gene's level of activity is one of the classic approaches developmental biologists employ to determine a gene's function. A recently developed method of gene perturbation called CRISPR-Cas, which was derived from a prokaryotic adaptive immune system, has been adapted for use in eukaryotic cells. This technology has been established in several model organisms as a powerful and efficient tool for knocking out or knocking down the function of a gene of interest.
View Article and Find Full Text PDFEmbryonic development depends on the orchestration of hundreds of regulatory and structural genes to initiate expression at the proper time, in the correct spatial domain(s), and in the amounts required for cells and tissues to become specified, determined, and ultimately to differentiate into a multicellular embryo. One of the key approaches to studying embryonic development is the generation of transgenic animals in which recombinant DNA molecules are transiently or stably introduced into embryos to alter gene expression, to manipulate gene function or to serve as reporters for specific cell types or subcellular compartments. In some model systems, such as the mouse, well-defined approaches for generating transgenic animals have been developed.
View Article and Find Full Text PDFMicroRNAs are a fundamental class of small RNAs involved in post-transcriptional gene regulation; however, the mechanism by which microRNAs regulate their gene targets in animals remains poorly understood. Practically, a mechanistic understanding of microRNA binding and regulation is crucial for the rational design of microRNA-based vectors for RNA interference. In this report, we focus on the largest known class of microRNA targets, the canonical seed targets, and explore the factors involved in modulating target downregulation in vivo at the protein level.
View Article and Find Full Text PDFNotch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates.
View Article and Find Full Text PDFChromatin immunoprecipitation (ChIP) assays allow the efficient characterization of the in vivo occupancy of genomic regions by DNA-binding proteins and thus facilitate the prediction of cis-regulatory sequences in silico and guide their validation in vivo. For these reasons, these assays and their permutations (e.g.
View Article and Find Full Text PDFThe formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis.
View Article and Find Full Text PDFThe nervous system-enriched microRNA miR-124 is necessary for proper nervous system development, although the mechanism remains poorly understood. Here, through a comprehensive analysis of miR-124 and its gene targets, we demonstrate that, in the chordate ascidian Ciona intestinalis, miR-124 plays an extensive role in promoting nervous system development. We discovered that feedback interaction between miR-124 and Notch signaling regulates the epidermal-peripheral nervous system (PNS) fate choice in tail midline cells.
View Article and Find Full Text PDFOperons are clusters of genes that are co-regulated from a common promoter. Operons are typically associated with prokaryotes, although a small number of eukaryotes have been shown to possess them. Among metazoans, operons have been extensively characterized in the nematode Caenorhabditis elegans in which ∼15% of the total genes are organized into operons.
View Article and Find Full Text PDFPre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA.
View Article and Find Full Text PDFDis Model Mech
September 2010
Here we present the ascidian Ciona intestinalis as an alternative invertebrate system to study Alzheimer's disease (AD) pathogenesis. Through the use of AD animal models, researchers often attempt to reproduce various aspects of the disease, particularly the coordinated processing of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretases to generate amyloid beta (Abeta)-containing plaques. Recently, Drosophila and C.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are conserved non-coding small RNAs with potent post-transcriptional gene regulatory functions. Recent computational approaches and sequencing of small RNAs had indicated the existence of about 80 Ciona intestinalis miRNAs, although it was not clear whether other miRNA genes were present in the genome. We undertook an alternative computational approach to look for Ciona miRNAs.
View Article and Find Full Text PDFBackground: The draft genome sequence of the ascidian Ciona intestinalis, along with associated gene models, has been a valuable research resource. However, recently accumulated expressed sequence tag (EST)/cDNA data have revealed numerous inconsistencies with the gene models due in part to intrinsic limitations in gene prediction programs and in part to the fragmented nature of the assembly.
Results: We have prepared a less-fragmented assembly on the basis of scaffold-joining guided by paired-end EST and bacterial artificial chromosome (BAC) sequences, and BAC chromosomal in situ hybridization data.
Purpose: Bendamustine has shown clinical activity in patients with disease refractory to conventional alkylator chemotherapy. The purpose of this study was to characterize the mechanisms of action of bendamustine and to compare it with structurally related compounds.
Experimental Design: Bendamustine was profiled in the National Cancer Institute in vitro antitumor screen.
Two customized electroporators were specifically designed for creating transgenic ascidian embryos. These electroporators were simple to build, inexpensive, and produced transgenic embryos with efficiencies that equaled or rivaled commercially available machines. A key design feature of these machines resulted in the generation of consistent electroporation pulses providing repeatability between experiments.
View Article and Find Full Text PDFThe green fluorescent protein (GFP) is used extensively to monitor gene expression and protein localization in living cells, particularly in developing embryos from a variety of species. Several GFP mutations have been characterized that improve protein expression and alter the emission spectra to produce proteins that emit green, blue, cyan, and yellow wavelengths. DsRed and its variants encode proteins that emit in the orange to red wavelengths.
View Article and Find Full Text PDFp21(SNFT) (21-kDa small nuclear factor isolated from T cells) is a novel human protein of the basic leucine zipper family. The overexpression of p21(SNFT) leads to the significant and specific repression of transcription from the interleukin-2 promoter as well as from several essential activator protein 1 (AP-1)-driven composite promoter elements. One example is the distal nuclear factor of activated T cells (NF-AT)/AP-1 element where the AP-1 (Fos/Jun) basic leucine zipper heterodimer interacts with members of the NF-AT family.
View Article and Find Full Text PDF