A new molecular-based velocity method is developed for high-temperature flame gases based on the hydroxyl tagging velocimetry (HTV) technique. In vibrationally excited HTV (VE-HTV), two photons from a KrF laser (248 nm) dissociate HO into a tag line of vibrationally excited OH (v=1). The excited state OH tag is selectively detected in a background of naturally occurring ground state OH (v=0).
View Article and Find Full Text PDFPhys Rev Lett
April 2013
A tabletop device uses 1.4 J to drive the symmetric collapse of a 1.8 mm radius vapor bubble in water at 22 bar.
View Article and Find Full Text PDFHydroxyl tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 (M 2) flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form a tagging grid of OH molecules. In this study, a 7 x 7 grid of hydroxyl (OH) molecules is tracked by planar laser-induced fluorescence.
View Article and Find Full Text PDFThe previously demonstrated nonintrusive time-of-flight molecular velocity tagging method, hydroxyl tagging velocimetry (HTV), has shown the capability of operating both at room temperature and in flames. Well-characterized jets of either air (nonreacting cases) or hydrogen-air diffusion flames (reacting cases) are employed. A 7 x 7 OH line grid is generated first through the single-photon photodissociation of H2O by a approximately 193 nm pulsed narrowband ArF excimer laser and is subsequently revealed by a read laser sheet through fluorescence caused by A2sigma+(v' = 3) <-- X2pi(i)(v'' = 0), A2sigma+(v' = 1) <-- X2pi(i)(v'' = 0), or A2sigma+(v' = 0) < or = X2pi(i)(v'' = 0) pumping at approximately 248, approximately 282, or approximately 308 nm, respectively.
View Article and Find Full Text PDF