Effective antiretroviral therapy (ART) is now nearly ubiquitous. However, the survival benefits conferred with ART contribute to an aging human immunodeficiency virus (HIV) population and increased risk of chronic diseases, like atherosclerotic cardiovascular disease (ASCVD). Furthermore, HIV is a known risk enhancer of ASCVD and acknowledged as such in the current 2018 AHA/ACC Blood Cholesterol guidelines [1].
View Article and Find Full Text PDFObjectives: To determine the relationship between lipoprotein particle size/number with hepatic steatosis (HS), given its association with traditional lipoproteins and coronary atherosclerosis.
Methods: Individuals with available CT data and blood samples enrolled in the PROMISE trial were studied. HS was defined based on CT attenuation.
Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight.
View Article and Find Full Text PDFBackground: Although sodium glucose co-transporter 2 inhibitors (SGLT2is) improve heart failure (HF)-related symptoms and outcomes in HF with preserved ejection fraction (HFpEF), underlying mechanisms remain unclear. In HF with reduced EF, dapagliflozin altered ketone and fatty acid metabolites vs placebo; however, metabolite signatures of SGLT2is have not been well elucidated in HFpEF.
Objectives: The goal of this study was to assess whether SGLT2i treatment altered systemic metabolic pathways and their relationship to outcomes in HFpEF.
Background: Lipid profiling is central for coronary artery disease (CAD) risk assessment. Nonadherence or unreported use of lipid-lowering drugs, particularly statins, can significantly complicate the association between lipid profile measures and CAD clinical outcomes. By combining medication history evaluation with statin analysis in plasma, we determined the effects of inaccurately reported statin use on lipid profile measures and their association with CAD risk.
View Article and Find Full Text PDFBackground: Cardiac metabolism is altered in heart failure and ischemia-reperfusion injury states. We hypothesized that metabolomic profiling during ex situ normothermic perfusion before heart transplantation (HT) would lend insight into myocardial substrate utilization and report on subclinical and clinical allograft dysfunction risk.
Methods: Metabolomic profiling was performed on serial samples of ex situ normothermic perfusate assaying biomarkers of myocardial injury in lactate and cardiac troponin I (TnI) as well as metabolites (66 acylcarnitines, 15 amino acids, nonesterified fatty acids [NEFA], ketones, and 3-hydroxybutyrate).
Designing studies for lipid-metabolism-related biomarker discovery is challenging because of the high prevalence of various statin and fibrate usage for lipid-lowering therapies. When the statin and fibrate use is determined based on self-reports, patient adherence to the prescribed statin dose regimen remains unknown. A potentially more accurate way to verify a patient's medication adherence is by direct analytical measurements.
View Article and Find Full Text PDFBackground: Complex and incompletely understood metabolic dysfunction associated with inflammation and protein-energy wasting contribute to the increased mortality risk of older patients and those with chronic organ diseases affected by cachexia, sarcopenia, malnutrition, and frailty. However, these wasting syndromes have uncertain relevance for patients with cardiovascular disease or people at lower risk. Studies are hampered by imperfect objective clinical assessment tools for these intertwined metabolic malnutrition and inflammation syndromes.
View Article and Find Full Text PDFCardiovascular disease (CVD) is the leading cause of mortality in adults with hepatic steatosis (HS). However, risk factors for CVD in HS are unknown. We aimed to identify factors associated with coronary artery disease (CAD) and incident major adverse cardiovascular events (MACE) in individuals with HS.
View Article and Find Full Text PDFResearch conducted in the past 15 years has yielded crucial insights that are reshaping our understanding of the systems physiology of branched-chain amino acid (BCAA) metabolism and the molecular mechanisms underlying the close relationship between BCAA homeostasis and cardiovascular health. The rapidly evolving literature paints a complex picture, in which numerous tissue-specific and disease-specific modes of BCAA regulation initiate a diverse set of molecular mechanisms that connect changes in BCAA homeostasis to the pathogenesis of cardiovascular diseases, including myocardial infarction, ischaemia-reperfusion injury, atherosclerosis, hypertension and heart failure. In this Review, we outline the current understanding of the major factors regulating BCAA abundance and metabolic fate, highlight molecular mechanisms connecting impaired BCAA homeostasis to cardiovascular disease, discuss the epidemiological evidence connecting BCAAs with various cardiovascular disease states and identify current knowledge gaps requiring further investigation.
View Article and Find Full Text PDFPurpose Of Review: Given the increasing burden of cardiovascular disease, we review the literature for earlier initiation of statin therapy at younger ages and lower low-density lipoprotein cholesterol (LDL-C) levels, with the goal of preventing the development of atherosclerosis prior to clinical events.
Recent Findings: There is a rising prevalence of dyslipidemia among younger adults. Although guidelines offer recommendations for adults over 40, there is little guidance for the management of younger adults with moderately elevated LDL-C levels.
Purpose Of Review: Women are less often recognized to have cardiovascular disease (CVD) risk and are underrepresented in randomized trials of lipid-lowering therapy. Here, we summarize non-pharmacologic and pharmacologic strategies for lipid-lowering in women of childbearing age, lipid changes during pregnancy and lactation, discuss sex-specific outcomes in currently available literature, and discuss future areas of research.
Recent Findings: While lifestyle interventions form the backbone of CVD prevention, some women of reproductive age have an indication for pharmacologic lipid-lowering.
Hepatic de novo lipogenesis is influenced by the branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BCKDK). Here, we aimed to determine whether circulating levels of the immediate substrates of BCKDH, the branched-chain α-keto acids (BCKAs), and hepatic BCKDK expression are associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD). Eighty metabolites (3 BCKAs, 14 amino acids, 43 acylcarnitines, 20 ceramides) were quantified in plasma from 288 patients with bariatric surgery with severe obesity and scored liver biopsy samples.
View Article and Find Full Text PDFAlthough there is an established bidirectional relationship between heart failure with reduced ejection fraction and liver disease, the association between heart failure with preserved ejection fraction (HFpEF) and liver diseases, such as nonalcoholic fatty liver disease (NAFLD), has not been well explored. In this paper, the authors provide an in-depth review of the relationship between HFpEF and NAFLD and propose 3 NAFLD-related HFpEF phenotypes (obstructive HFpEF, metabolic HFpEF, and advanced liver fibrosis HFpEF). The authors also discuss diagnostic challenges related to the concurrent presence of NAFLD and HFpEF and offer several treatment options for NAFLD-related HFpEF phenotypes.
View Article and Find Full Text PDFBackground Nonalcoholic fatty liver disease (NAFLD) and heart failure (HF) are increasing in prevalence. The independent association between NAFLD and downstream risk of HF and HF subtypes (HF with preserved ejection fraction and HF with reduced ejection fraction) is not well established. Methods and Results This was a retrospective, cohort study among Medicare beneficiaries.
View Article and Find Full Text PDFBackground: Whether differences in circulating long chain acylcarnitines (LCAC) are seen in heart failure (HF) patients with and without diabetes mellitus (DM), and whether these biomarkers report on exercise capacity and clinical outcomes, remains unknown. The objective of the current study was to use metabolomic profiling to identify biomarkers that report on exercise capacity, clinical outcomes, and differential response to exercise in HF patients with and without DM.
Methods: Targeted mass spectrometry was used to quantify metabolites in plasma from participants in the heart failure: a controlled trial investigating outcomes of exercise training (HF-ACTION) trial.
Background: A strong association of obesity and insulin resistance with increased circulating levels of branched-chain and aromatic amino acids and decreased glycine levels has been recognized in human subjects for decades.
Scope Of Review: More recently, human metabolomics and genetic studies have confirmed and expanded upon these observations, accompanied by a surge in preclinical studies that have identified mechanisms involved in the perturbation of amino acid homeostasis- how these events are connected to dysregulated glucose and lipid metabolism, and how elevations in branched-chain amino acids (BCAA) may participate in the development of insulin resistance, type 2 diabetes (T2D), and other cardiometabolic diseases and conditions.
Major Conclusions: In human cohorts, BCAA and related metabolites are now well established as among the strongest biomarkers of obesity, insulin resistance, T2D, and cardiovascular diseases.