Publications by authors named "Robert W Brueggemeier"

New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized.

View Article and Find Full Text PDF

Background: Liposomes have been employed to improve pharmacokinetics and reduce side effects of drugs. They can be functionalized with antibodies for targeted delivery. While the monoclonal antibody trastuzumab has been employed in the therapy of HER2-positive breast cancer, the resistance developed during treatment has been reported.

View Article and Find Full Text PDF

Background: Keratinocyte growth factor (KGF)/KGF receptor (KGFR) signaling produces a rapid increase in the progression of breast cancer. Molecular modeling was used to create a group of KGFR-selective kinase inhibitors (TKI). Compound L-27 is a potent and selective KGFR TKI.

View Article and Find Full Text PDF

Aim: Cationic ethylphosphatidylcholines (ePCs) were evaluated for the delivery of siRNA in modified breast cancer cells.

Materials And Methods: Dimyristoleoyl-ePC (C14), dioleoyl-ePC (C18), and dilauroyl-ePC (C12) nanoparticles were complexed with siRNA for green fluorescent protein (GFP) suppression in modified MCF-7 breast cancer cells. The kinetics of GFP suppression were followed over the course of 72 hours.

View Article and Find Full Text PDF

Unlabelled: Human serum albumin (HSA)-coated lipid nanoparticles (HSA-LNPs) loaded with phrGFP-targeted siRNA (HSA-LNPs-siRNA) were prepared and evaluated for gene downregulation effect in phrGFP-transfected breast cancer cells and the corresponding xenograft tumor model. HSA-LNPs-siRNA were successfully prepared with a particle size of 79.5±5.

View Article and Find Full Text PDF

DOTAP, as a racemic mixture, is a cationic lipid and a widely used transfection reagent. In this study, the effect of DOTAP's stereochemical structure on transfection efficiency was evaluated in vitro. Racemic and enantiomerically pure DOTAP were used in lipoplex formulations to deliver siRNA to MCF-7 cells, targeting the aromatase enzyme.

View Article and Find Full Text PDF

Nonionic surfactant vesicles, or SPANosomes (SPs), comprised of cationic lipid and sorbitan monooleate (Span 80) were synthesized and evaluated as small interfering RNA (siRNA) vectors. The SPs had a mean diameter of less than 100 nm and exhibited excellent colloidal stability. The SP/siRNA complexes possessed a slightly positive zeta potential of 12 mV and demonstrated a high siRNA incorporation efficiency of greater than 80%.

View Article and Find Full Text PDF

Factors associated with increased estrogen synthesis increase breast cancer risk. Increased aromatase and estrogen receptor α (ERα) in both normal epithelium and ductal carcinoma in situ lesions are found in conjunction with breast cancer, leading to the idea that altered estrogen signaling pathways predispose the mammary gland to cancer development. Here, we developed a transgenic mouse that conditionally expresses aromatase in the mammary gland, and used it along with a deregulated ERα expression model to investigate the molecular pathways involved in the development of mammary gland preneoplasia and carcinoma.

View Article and Find Full Text PDF

Purpose: Within breast tissue, aromatase expression and activity is increased by prostaglandin E2, providing a rationale for combining the COX-2 inhibitor celecoxib with an aromatase inhibitor. To evaluate the effect of these drugs on aromatase and other biomarkers, a phase II trial of neoadjuvant exemestane followed sequentially by celecoxib plus exemestane was performed.

Methods: Postmenopausal women with estrogen receptor (ER) and/or progesterone (PR) positive stages II-III breast cancers received 8 weeks of exemestane 25 mg daily, followed by 8 weeks of exemestane 25 mg daily and celecoxib 400 mg twice daily.

View Article and Find Full Text PDF

Background: Keratinocyte growth factor (KGF) acts at the KGF receptor (KGFR) to produce a rapid stimulation of breast cancer cell proliferation and motility which is mediated via the Erk signaling pathway. Enhancement of KGF/KGFR signal transduction may be an early step in the metastatic progression of breast cancer. Receptor modeling of KGFR was used to identify selective KGFR tyrosine kinase (TK) inhibitor molecules that have the potential to bind selectively to the KGFR.

View Article and Find Full Text PDF

The hexane- and ethyl acetate-soluble extracts of the leaves of Brassaiopsis glomerulata (Blume) Regel (Araliaceae), collected in Indonesia, were found to inhibit aromatase, the rate-limiting enzyme in the production of estrogens from androgens, in both enzyme- and cell-based aromatase inhibition (AI) assays. Bioassay-guided fractionation led to the isolation of six known compounds of the steroid and triterpenoid classes (1-6) from the hexane extract, of which 6β-hydroxystimasta-4-en-3-one (5), was moderately active in the cell-based AI assay. Fractionation of the ethyl acetate extract afforded seven pure isolates (7-13) of the modified peptide, fatty acid, monoterpenoid, and benzenoid types, including six known compounds and the new natural product, N-benzoyl-L-phenylalanine methyl ester (9).

View Article and Find Full Text PDF

Transferrin (Tf)-conjugated lipid-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles carrying the aromatase inhibitor, 7alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione (7alpha-APTADD), were synthesized by a solvent injection method. Formulation parameters including PLGA-to-lipid, egg PC-to-TPGS, and drug-to-PLGA ratios and aqueous-to-organic phase ratio at the point of synthesis were optimized to obtain nanoparticles with desired sizes and drug loading efficiency. The optimal formulation had a drug loading efficiency of 36.

View Article and Find Full Text PDF

Aromatase is a particularly attractive drug target in the treatment of hormone-responsive breast cancer, and aromatase activity in breast cancer patients is greater in or near the tumor tissue compared with the normal breast tissue. Complex regulation of aromatase expression in human tissues involves alternative promoter sites that provide tissue-specific control. Previous studies in our laboratories suggested a strong association between aromatase (CYP19) gene expression and the expression of cyclooxygenase (COX) genes.

View Article and Find Full Text PDF

Aromatase inhibitors (AIs) are approved for use in both early- and advanced-stage breast cancer in postmenopausal women. Although the currently approved "third-generation" AIs all powerfully inhibit estrogen synthesis, they may be subdivided into steroidal and nonsteroidal inhibitors, which interact with the aromatase enzyme differently. Nonsteroidal AIs bind noncovalently and reversibly to the aromatase protein, whereas steroidal AIs may bind covalently and irreversibly to the aromatase enzyme.

View Article and Find Full Text PDF

With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.

View Article and Find Full Text PDF

Twelve xanthone constituents of the botanical dietary supplement mangosteen (the pericarp of Garcinia mangostana) were screened using a noncellular, enzyme-based microsomal aromatase inhibition assay. Of these compounds, garcinone D (3), garcinone E (5), alpha-mangostin (8), and gamma-mangostin (9) exhibited dose-dependent inhibitory activity. In a follow-up cell-based assay using SK-BR-3 breast cancer cells that express high levels of aromatase, the most potent of these four xanthones was gamma-mangostin (9).

View Article and Find Full Text PDF

Tamoxifen is a mainstay in the treatment of estrogen receptor (ER)-positive breast cancer patients. Although the efficacy of tamoxifen has been attributed to induction of tumor cell growth arrest and apoptosis by inhibition of ER signaling, recent evidence indicates that tamoxifen possesses ER-independent antitumor activities. Here, we use OSU-03012, a small-molecule inhibitor of phosphoinositide-dependent protein kinase-1 (PDK-1) to address the hypothesis that PDK-1/Akt signaling represents a therapeutically relevant target to sensitize ER-negative breast cancer to tamoxifen.

View Article and Find Full Text PDF

Combinatorial chemistry approaches facilitate drug discovery processes and result in structural modifications of lead compounds that enhance pharmacological activity, improve pharmacokinetic properties, or reduce unwanted side effects. Epidemiological and animal model studies have suggested that nonsteroidal anti-inflammatory drugs (NSAIDs) can act as chemopreventive agents. The cyclooxygenase-2 (COX-2) inhibitor nimesulide shows anticancer effects in several cancer cell lines via COX-2-dependent and -independent mechanisms.

View Article and Find Full Text PDF

Aromatase converts androgens to estrogens and is a particularly attractive target in the treatment of estrogen receptor positive breast cancer. Previously, the COX-2 selective inhibitor nimesulide and analogs decreased aromatase expression and enzyme activity independent of COX-2 inhibition. In this manuscript, a combinatorial approach was used to generate diversely substituted novel sulfonanilides by parallel synthesis.

View Article and Find Full Text PDF

Recent studies exhibit that 4-hydroxyphenylretinamide (4HPR) decreases aromatase activity in breast and placental cells. The effect of synthetic 4HPR analogs on aromatase and expression was examined in three breast cancer cell lines. Most derivatives did not decrease cellular aromatase activity.

View Article and Find Full Text PDF