Dietary assessment is a major challenge in epidemiological research and is associated with a high time and financial burden. Automated food frequency questionnaires (FFQs) have the potential to rapidly collect dietary intake data in large studies while reducing human error risk during data processing. We developed a semiquantitative, multilingual, electronic FFQ for real-time dietary intake assessment in the Swiss adult population, called "Swiss eFFQ".
View Article and Find Full Text PDFWhite matter hyperintensities (WMH) are areas of increased signal visualized on T2-weighted fluid attenuated inversion recovery (FLAIR) brain magnetic resonance imaging (MRI) sequences. They are typically attributed to small vessel cerebrovascular disease in the context of aging. Among older adults, WMH are associated with risk of cognitive decline and dementia, stroke, and various other health outcomes.
View Article and Find Full Text PDFMicrostructural and macrostructural white matter damage occurs frequently with aging, is associated with negative health outcomes, and can be imaged non-invasively as fractional anisotropy (FA) and white matter hyperintensities (WMH), respectively. The extent to which diminished microstructure precedes or results from macrostructural white matter damage is poorly understood. This study evaluated the hypothesis that white matter areas with normatively lower microstructure in young adults are most susceptible to develop WMH in older adults.
View Article and Find Full Text PDFBackground: The amyloid cascade hypothesis characterizes the stereotyped progression of pathological changes in Alzheimer's disease (AD) beginning with beta amyloid deposition, but does not address the reasons for amyloid deposition. Brain areas with relatively higher neuronal activity, metabolic demand, and production of reactive oxygen species in earlier life may have higher beta amyloid deposition in later life. The aim of this study was to investigate early life patterns of perfusion and late life patterns of amyloid deposition to determine the extent to which normative cerebral perfusion predisposes specific regions to future beta amyloid deposition.
View Article and Find Full Text PDFThe aim of this investigation was to determine whether circulating inflammatory biomarkers c-reactive protein (CRP), interleukin-6 (IL6), and alpha 1-antichymotrypsin (ACT) were related to structural brain measures assessed by magnetic resonance imaging (MRI). High-resolution structural MRI was collected on 680 non-demented elderly (mean age 80.1years) participants of a community-based, multiethnic cohort.
View Article and Find Full Text PDFObjective: We examined the association of nutrient intake with microstructural white matter integrity, and the role of white matter integrity in the association between nutrient consumption and cognition.
Methods: This cross-sectional analysis included 239 elderly (age ≥ 65 years) participants of a multiethnic cohort. White matter integrity was measured with fractional anisotropy (FA) from diffusion tensor magnetic resonance imaging.
Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed.
View Article and Find Full Text PDFBootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms.
View Article and Find Full Text PDFPurpose: To determine the precision for in vivo applications of model and non-model-based bootstrap algorithms for estimating the measurement uncertainty of diffusion parameters derived from diffusion tensor imaging data.
Materials And Methods: Four different bootstrap methods were applied to diffusion datasets acquired during 10 repeated imaging sessions. Measurement uncertainty was derived in eight manually selected regions of interest and in the entire brain white matter and gray matter.
Purpose: To optimize the diagnostic accuracy of the functional diffusion map for monitoring tumor treatment response in cancer patients.
Materials And Methods: Using Monte Carlo simulations, measurement precision of the apparent diffusion coefficient (ADC), and particularly accuracy of threshold determination from healthy reference tissue, are evaluated by investigating the repeatability limit of the ADC as a function of different degrees of diffusion weighting of the sequence. Phantom and in-vivo experiments are performed to verify and illustrate the results of the simulations.
The potential signal-to-noise ratio (SNR) gain at ultrahigh field strengths offers the promise of higher image resolution in single-shot diffusion-weighted echo-planar imaging the challenge being reduced T(2) and T(2) * relaxation times and increased B(0) inhomogeneity which lead to geometric distortions and image blurring. These can be addressed using parallel imaging (PI) methods for which a greater range of feasible reduction factors has been predicted at ultrahigh field strengths-the tradeoff being an associated SNR loss. Using comprehensive simulations, the SNR of high-resolution diffusion-weighted echo-planar imaging in combination with spin-echo and stimulated-echo acquisition is explored at 7 T and compared to 3 T.
View Article and Find Full Text PDF