Earth system and environmental impact studies need high quality and up-to-date estimates of atmospheric deposition. This study demonstrates the methodological benefits of multimodel ensemble and measurement-model fusion mapping approaches for atmospheric deposition focusing on 2010, a year for which several studies were conducted. Global model-only deposition assessment can be further improved by integrating new model-measurement techniques, including expanded capabilities of satellite observations of atmospheric composition.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe profound changes in global SO emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015.
View Article and Find Full Text PDFJ Adv Model Earth Syst
January 2018
To quantify differences between dry deposition algorithms commonly used in North America, five models were selected to calculate dry deposition velocity ( ) for O and SO over a temperate mixed forest in southern Ontario, Canada, where a 5-year flux database had previously been developed. The models performed better in summer than in winter with correlation coefficients for hourly between models and measurements being approximately 0.6 and 0.
View Article and Find Full Text PDFVertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
December 2012
Rationale: The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition.
Methods: In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers.
Ambient ammonia monitoring using Ogawa passive samplers was conducted in the Four Corners area and eastern Oklahoma, USA during 2007. The resulting data will be useful in the multipollutant management of ozone, nitrogen oxides, and visibility (atmospheric regional haze) in the Four Corners area, an area with growing oil/gas production and increasing coal-based power plant construction. The passive monitoring data also add new ambient ammonia concentration information for the U.
View Article and Find Full Text PDFMeasured ozone (O(3)) and carbon dioxide (CO(2)) concentrations and fluxes over five different canopies (mixed coniferous-deciduous forest, deciduous forest, corn, soybean and pasture) in the eastern USA were analyzed to investigate the stomatal uptake of O(3). It was found that the ambient O(3) concentration levels had little effect on stomatal conductance. However, the accumulated stomatal uptake of O(3), upon reaching a threshold value on any given day, appears to reduce the rate of further O(3) uptake substantially.
View Article and Find Full Text PDFReductions in North American sulfur dioxide (SO2) emissions promoted expectations that aquatic ecosystems in southeastern Canada would soon recover from acidification. Only lakes located near smelters that have dramatically reduced emissions approach this expectation. Lakes in the Atlantic provinces, Quebec and Ontario affected only by long-range sources show a general decline in sulfate (SO4(2-)) concentrations, but with a relatively smaller compensating increase in pH or alkalinity.
View Article and Find Full Text PDF