Publications by authors named "Robert Vann"

Objective: To report the cardiovascular (CV) safety of dihydroergotamine mesylate (DHE) administered by precision olfactory delivery (INP104) from two clinical trials.

Background: Although the absolute risk is low, migraine is associated with an increased risk of CV events. DHE is a highly effective acute treatment for migraine, but due to its theoretical risk of promoting arterial vasoconstriction, DHE is contraindicated in patients with CV disease or an unfavorable risk factor profile.

View Article and Find Full Text PDF

Introduction: Dihydroergotamine mesylate (DHE) is an established effective acute therapy for migraine and is often characterized by its broad receptor pharmacology. Knowledge of DHE pharmacology largely comes from studies employing older methodologies.

Objective: To assess DHE receptor activity using high-throughput methods to screen for functional ß-arrestin activity at G protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

Purpose Of Review: Historical evidence suggests a shared underlying etiology for migraine and gastrointestinal (GI) disorders that involves the gut-brain axis. Here we provide narrative review of recent literature on the gut-brain connection and migraine to emphasize the importance of tailoring treatment plans for patients with episodic migraine who experience GI comorbidities and symptoms.

Recent Findings: Recent population-based studies report the prevalence of migraine and GI disorders as comorbidities as well as overlapping symptomology.

View Article and Find Full Text PDF

Haloperidol is an effective antipsychotic drug for treatment of schizophrenia, but prolonged use can lead to debilitating side effects. To better understand the effects of long-term administration, we measured global metabolic changes in mouse brain following 3 mg/kg/day haloperidol for 28 days. These conditions lead to movement-related side effects in mice akin to those observed in patients after prolonged use.

View Article and Find Full Text PDF

A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.

View Article and Find Full Text PDF

A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system.

View Article and Find Full Text PDF

The mechanism through which marijuana produces its psychoactive effects is Δ(9)-tetrahydrocannabinol (THC)-induced activation of cannabinoid CB1 receptors. These receptors are normally activated by endogenous lipids, including anandamide and 2-arachidonoyl glycerol (2-AG). A logical "first step" in determination of the role of these endocannabinoids in THC׳s psychoactive effects is to investigate the degree to which pharmacologically induced increases in anandamide and/or 2-AG concentrations through exogenous administration and/or systemic administration of inhibitors of their metabolism, fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), respectively, share THC׳s discriminative stimulus effects.

View Article and Find Full Text PDF

Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity.

View Article and Find Full Text PDF

Background: Use of synthetic "marijuana" has increased in recent years, produced adverse effects and prompted the temporary DEA ban of five specific cannabinoid analogs, including JWH-018. The objectives of the current study include determining the chemical content of the herbal product, Buzz, assessing its behavioral effects upon inhalation exposure to mice, determining whether CB(1) receptors mediate its pharmacological activity, and ascertaining its biodisposition in blood and various organs.

Methods: Using a nose-only exposure system, mice were exposed to smoke produced from combustion of an herbal incense product, Buzz, which contained 5.

View Article and Find Full Text PDF

Δ(9)-Tetrahydrocannabinol (THC) discrimination in rodents is a behavioral assay that has been used to probe differences among classes of cannabinoids in rats. The purpose of this study was to determine whether traditional and anandamide-like cannabinoids were distinguishable in cannabinoid discrimination procedures in mice. Male mice were trained to discriminate 30 mg/kg THC or 70 mg/kg methanandamide from vehicle in a two-lever milk-reinforced drug discrimination procedure.

View Article and Find Full Text PDF

The endogenous cannabinoid system has been noted for its therapeutic potential, as well as the psychoactivity of cannabinoids such as Δ9-tetrahydrocannabinol (THC). However, less is known about the psychoactivity of anandamide (AEA), an endocannabinoid ligand. Thus, the goals of this study were to establish AEA as a discriminative stimulus in transgenic mice lacking fatty acid amide hydrolase (i.

View Article and Find Full Text PDF

Rimonabant, the prototypic antagonist of cannabinoid CB(1) receptors, has been reported to have inverse agonist properties at higher concentrations, which may complicate its use as a tool for mechanistic evaluation of cannabinoid pharmacology. Consequently, recent synthesis efforts have concentrated on discovery of a neutral antagonist using a variety of structural templates. The purpose of this study was to evaluate the pharmacological properties of the putative neutral cannabinoid CB(1) receptor antagonist O-2050, a sulfonamide side chain analog of Δ(8)-tetrahydrocannabinol.

View Article and Find Full Text PDF

Neurocognitive deficits are a core feature of schizophrenia and, therefore, represent potentially critical outcome variables for assessing antipsychotic treatment response. We performed genome-wide association studies (GWAS) with 492K single nucleotide polymorphisms (SNPs) in a sample of 738 patients with schizophrenia from the Clinical Antipsychotic Trials of Intervention Effectiveness study. Outcome variables consisted of a neurocognitive battery administered at multiple time points over an 18-month period, measuring processing speed, verbal memory, vigilance, reasoning, and working memory domains.

View Article and Find Full Text PDF

Bupropion is an atypical antidepressant that also has utility as a smoking cessation aid. Hydroxybupropions are major metabolites of bupropion and are believed to contribute to antidepressant and perhaps smoking cessation activities. Because bupropion metabolism is more similar in humans and mice than in humans and rats, the present study investigated effects of hydroxybupropion enantiomers in mouse behavioral models measuring various aspects of nicotine dependence.

View Article and Find Full Text PDF

Rationale: Salvinorin A, the primary psychoactive derivative of the hallucinogenic herb Salvia divinorum, is a potent and highly selective kappa-opioid receptor (KOR) agonist. Several recent studies, however, have suggested endocannabinoid system mediation of some of its effects.

Objectives: This study represents a systematic examination of this hypothesis.

View Article and Find Full Text PDF

Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana, and other direct cannabinoid receptor (CB1) agonists produce a number of neurobehavioral effects in mammals that range from the beneficial (analgesia) to the untoward (abuse potential). Why, however, this full spectrum of activities is not observed upon pharmacological inhibition or genetic deletion of either fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), enzymes that regulate the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), respectively, has remained unclear. Here, we describe a selective and efficacious dual FAAH/MAGL inhibitor, JZL195, and show that this agent exhibits broad activity in the tetrad test for CB1 agonism, causing analgesia, hypomotilty, and catalepsy.

View Article and Find Full Text PDF

The introduction of transgenic and knockout mice has shaped new interest in developing novel and modified behavioral methods for mice that evaluate the various manifestations of nicotine withdrawal syndromes. This study assessed the disruption of operant baselines during drug withdrawal, an established rat model of nicotine dependence, in mice. Subjects were trained to lever press for food reinforcement during daily operant sessions.

View Article and Find Full Text PDF

Primarily, rats have served as subjects in Delta(9)-tetrahydrocannabinol's (THC) discrimination studies although other species such as monkeys and pigeons have been used. While the introduction of the knockout and transgenic mice has vastly stimulated the study of the discriminative stimulus effects of drugs there is only a single published report of mice trained to discriminate THC. Thus, this study extended those results by providing a systematic replication that THC serves as an effective discriminative stimulus in mice and by further investigating the mechanisms of action involved in the THC discrimination model in the mouse.

View Article and Find Full Text PDF

Replacement therapy with the synthetic mu-opioid agonist methadone is an efficacious treatment for opioid abuse. While much is known about methadone's pharmacology, its discriminative stimulus properties remain largely unexplored. The present study sought to establish methadone discrimination in rats.

View Article and Find Full Text PDF

The Lewis (LEW) strain of rat appears more sensitive to nicotine than other strains in self-administration, conditioned place preference, and drug discrimination behavioral studies. The present study sought to further evaluate the behavioral effects of chronic nicotine treatment in the LEW strain by assessing spontaneous activity, which has consistently revealed sensitization to chronic nicotine administration in Sprague Dawley (SD) rats. High active and low active male and female LEW rats (N=8 per group) were treated twice daily with either nicotine (0.

View Article and Find Full Text PDF

Previous research in this laboratory has shown that nicotine's effects on spontaneous activity are contingent on individual differences, attenuating activity in high active rats and increasing it in low active rats. This study was designed to further evaluate this phenomenon, and to compare it with nicotine's effects on nicotinic acetylcholine receptor (nAChR) expression in several brain regions. Male and female Sprague-Dawley rats selected for differences in baseline activity were administered nicotine twice daily for 14 days, and its effects on spontaneous activity were evaluated following 1, 13 and 27 doses.

View Article and Find Full Text PDF

Cannabis sativa (marijuana plant) contains myriad cannabinoid compounds; yet, investigative attention has focused almost exclusively on Delta(9)-tetrahydrocannabinol (THC), its primary psychoactive substituent. Interest in modulation of THC's effects by these other cannabinoids (e.g.

View Article and Find Full Text PDF

Rationale: Individuals vary in their susceptibility to nicotine addiction. However, there is little evidence that behavioral sensitivity to nicotine is dependent upon the functional state of nicotinic cholinergic receptors (nAChRs).

Objective: This study aims to determine the relationship between in vivo behavioral desensitization and in vitro desensitization of nAChR function.

View Article and Find Full Text PDF

While the role of dextrorphan and dextromethorphan as N-methyl-d-aspartate (NMDA) receptor antagonists has received considerable research attention, their effects on nicotinic acetylcholine receptors (nAChR) has been less well characterized. Recent in vitro and in vivo research has suggested that these drugs noncompetitively block alpha3beta4*, alpha4beta2, and alpha7 nAChR subtypes and antagonize nicotine's antinociceptive and reinforcing effects. Both drugs were most potent at blocking alpha3beta4* AChR.

View Article and Find Full Text PDF

Side effects of marijuana-based drugs and synthetic analogs of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), including sedation and dysphoria, have limited their therapeutic application. Ajulemic acid (AJA), a side-chain synthetic analog of Delta(8)-THC-11-oic acid, has been reported to have anti-inflammatory properties without producing undesired psychoactive effects. Moreover, it has been suggested that AJA does not interact with cannabinoid receptors to produce its pharmacological effects.

View Article and Find Full Text PDF