Docking calculations can accelerate drug discovery by predicting the bound poses of ligands for a targeted protein. However, it is not clear which docking methods work best. Furthermore, predicting poses requires steps outside the docking algorithm itself, such as preparation of the protein and ligand, and it is not known which components are most in need of improvement.
View Article and Find Full Text PDFIn silico virtual screening (VS) is a powerful hit identification technique used in drug discovery projects that aims to effectively distinguish true actives from inactive or decoy molecules. To better capture the dynamic behavior of protein drug targets, compound databases may be screened against an ensemble of protein conformations, which may be experimentally determined or generated computationally, i.e.
View Article and Find Full Text PDFEnsemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented.
View Article and Find Full Text PDFPredicting the rate of nonfacilitated permeation of solutes across lipid bilayers is important to drug design, toxicology, and signaling. These rates can be estimated using molecular dynamics simulations combined with the inhomogeneous solubility-diffusion model, which requires calculation of the potential of mean force and position-dependent diffusivity of the solute along the transmembrane axis. In this paper, we assess the efficiency and accuracy of several methods for the calculation of the permeability of a model DMPC bilayer to urea, benzoic acid, and codeine.
View Article and Find Full Text PDFIt is widely accepted that protein receptors exist as an ensemble of conformations in solution. How best to incorporate receptor flexibility into virtual screening protocols used for drug discovery remains a significant challenge. Here, stepwise methodologies are described to generate and select relevant protein conformations for virtual screening in the context of the relaxed complex scheme (RCS), to design small molecule libraries for docking, and to perform statistical analyses on the virtual screening results.
View Article and Find Full Text PDFInfluenza is a global human health threat, and there is an immediate need for new antiviral therapies to circumvent the limitations of vaccination and current small molecule therapies. During viral transcription, influenza incorporates the 5'-end of the host cell's mRNA in a process that requires the influenza endonuclease. Based on recently published endonuclease crystalized structures, a three-dimensional pharmacophore was developed and used to virtually screen 450,000 compounds for influenza endonuclease inhibitors.
View Article and Find Full Text PDFWe describe the development of automated workflows that support computed-aided drug discovery (CADD) and molecular dynamics (MD) simulations and are included as part of the National Biomedical Computational Resource (NBCR). The main workflow components include: file-management tasks, ligand force field parameterization, receptor-ligand molecular dynamics (MD) simulations, job submission and monitoring on relevant high-performance computing (HPC) resources, receptor structural clustering, virtual screening (VS), and statistical analyses of the VS results. The workflows aim to standardize simulation and analysis and promote best practices within the molecular simulation and CADD communities.
View Article and Find Full Text PDFThe mRNA guanylyltransferase, or mRNA capping enzyme, cotranscriptionally caps the 5'-end of nascent mRNA with GMP during the second reaction in a set of three enzymatic reactions that result in the formation of an N7-methylguanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the α-phosphorus atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation but have provided little insight into the requirement's molecular origins.
View Article and Find Full Text PDFAlthough the motions of proteins are fundamental for their function, for pragmatic reasons, the consideration of protein elasticity has traditionally been neglected in drug discovery and design. This review details protein motion, its relevance to biomolecular interactions and how it can be sampled using molecular dynamics simulations. Within this context, two major areas of research in structure-based prediction that can benefit from considering protein flexibility, binding site detection and molecular docking, are discussed.
View Article and Find Full Text PDFIt is widely recognized that adsorption, distribution, metabolism, excretion, and toxicology liabilities kill the majority of drug candidates that progress to clinical trials. The development of computational models to predict small molecule membrane permeability is therefore of considerable scientific and public health interest. Empirical qualitative structure permeability relationship models of permeability have been a mainstay in industrial applications, but lack a deep understanding of the underlying biologic physics.
View Article and Find Full Text PDFInfluenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes.
View Article and Find Full Text PDFJ Comput Aided Mol Des
November 2011
Small molecule permeability through cellular membranes is critical to a better understanding of pharmacodynamics and the drug discovery endeavor. Such permeability may be estimated as a function of the free energy change of barrier crossing by invoking the barrier domain model, which posits that permeation is limited by passage through a single "barrier domain" and assumes diffusivity differences among compounds of similar structure are negligible. Inspired by the work of Rezai and co-workers (JACS 128:14073-14080, 2006), we estimate this free energy change as the difference in implicit solvation free energies in chloroform and water, but extend their model to include solute conformational affects.
View Article and Find Full Text PDFHuman diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly.
View Article and Find Full Text PDFThe recently discovered 150-cavity in the active site of group-1 influenza A neuraminidase (NA) proteins provides a target for rational structure-based drug development to counter the increasing frequency of antiviral resistance in influenza. Surprisingly, the 2009 H1N1 pandemic virus (09N1) neuraminidase was crystalized without the 150-cavity characteristic of group-1 NAs. Here we demonstrate, through a total sum of 1.
View Article and Find Full Text PDFBackground: Neglected tropical diseases, including diseases caused by trypanosomatid parasites such as Trypanosoma brucei, cost tens of millions of disability-adjusted life-years annually. As the current treatments for African trypanosomiasis and other similar infections are limited, new therapeutics are urgently needed. RNA Editing Ligase 1 (REL1), a protein unique to trypanosomes and other kinetoplastids, was identified recently as a potential drug target.
View Article and Find Full Text PDFExpert Opin Drug Discov
December 2009
BACKGROUND: Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes.
View Article and Find Full Text PDFReplica exchange accelerated molecular dynamics (REXAMD) is a method that enhances conformational sampling while retaining at least one replica on the original potential, thus avoiding the statistical problems of exponential reweighting. In this article, we study three methods that can combine the data from the accelerated replicas to enhance the estimate of properties on the original potential: weighted histogram analysis method (WHAM), pairwise multistate Bennett acceptance ratio (PBAR), and multistate Bennett acceptance ratio (MBAR). We show that the method that makes the most efficient use of equilibrium data from REXAMD simulations is the MBAR method.
View Article and Find Full Text PDFThe 317 residue PBCV-1 mRNA capping enzyme catalyzes the second enzymatic reaction in the formation of an N-7-methyl-GMP cap on the 5'-end of the nascent mRNA. It is composed of two globular domains bound by a short flexible peptide linker, which have been shown to undergo opening and closing events. The small size and experimentally demonstrated domain mobility make the PBCV-1 capping enzyme an ideally suited model system to explore domain mobility in context of substrate binding.
View Article and Find Full Text PDFMembers of the genus Trypanosoma, which include the pathogenic species Trypanosoma brucei and Trypanosoma cruzi, edit their post-transcriptional mitochondrial RNA via a multiprotein complex called the editosome. In T. brucei, the RNA is nicked prior to uridylate insertion and deletion.
View Article and Find Full Text PDFThe addition of a N7-methyl guanosine cap to the 5' end of nascent mRNA is carried out by the mRNA-capping enzyme, a two-domain protein that is a member of the nucleotidyltransferase superfamily. The mRNA-capping enzyme is composed of a catalytic nucleotidyltransferase domain and a noncatalytic oligonucleotide/oligosaccharide binding (OB) domain. Large-scale domain motion triggered by substrate binding mediates catalytically requisite conformational rearrangement of the GTP substrate prior to the chemical step.
View Article and Find Full Text PDFRNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design.
View Article and Find Full Text PDF