Publications by authors named "Robert V Schulte"

This data descriptor describes the Roessingh Research & Development-MyLeg database for activity prediction (MyPredict), containing three data sets. These data sets contain data from 55 able-bodied subjects, mean age 24 ± 2 years, measured in 85 measurement sessions. Measurement sessions consisted of trials containing sitting, standing, overground walking, stair ascent, stair descent, ramp ascent, ramp descent, walking on uneven terrain and walking in simulated confined spaces.

View Article and Find Full Text PDF

Synchronization of motion capture systems with other modalities in out-of-the-lab settings is not trivial. Various synchronization methods exist, such as using servers or transistor-transistor-logic pulses. However, not all measurement set-ups allow for such synchronization methods.

View Article and Find Full Text PDF

Pattern recognition in EMG-based control systems suffer from increase in error rate over time, which could lead to unwanted behavior. This so-called concept drift in myoelectric control systems could be caused by fatigue, sensor replacement and varying skin conditions. To circumvent concept drift, adaptation strategies could be used to retrain a pattern recognition system, which could lead to comparable error rates over multiple days.

View Article and Find Full Text PDF

Proportional control using surface electromyography (EMG) enables more intuitive control of a transfemoral prosthesis. However, EMG is a noisy signal which can vary over time, giving rise to the question what approach for knee torque estimation is most suitable for multi-day control. In this study we compared three different modelling frameworks to estimate knee torque in non-weight-bearing situations.

View Article and Find Full Text PDF

Choosing the right features is important to optimize lower limb pattern recognition, such as in prosthetic control. EMG signals are noisy in nature, which makes it more challenging to extract useful information. Many features are used in the literature, which raises the question which features are most suited for use in lower limb myoelectric control.

View Article and Find Full Text PDF

Robot-assisted gait training (RAGT) devices are used in rehabilitation to improve patients' walking function. While there are some reports on the adverse events (AEs) and associated risks in overground exoskeletons, the risks of stationary gait trainers cannot be accurately assessed. We therefore aimed to collect information on AEs occurring during the use of stationary gait robots and identify associated risks, as well as gaps and needs, for safe use of these devices.

View Article and Find Full Text PDF