This work examines a recently improved, dynamic air sampling technique, high surface area solid-phase microextraction (HSA-SPME), developed for time-critical, high-volume sampling and analysis scenarios. The previously reported HSA-SPME sampling device, which provides 10-fold greater surface area compared to commercially available SPME fibers, allowed for an increased analyte uptake per unit time relative to exhaustive sampling through a standard sorbent tube. This sampling device has been improved with the addition of a type-K thermocouple and a custom heater control circuit for direct heating, providing precise (relative standard deviation ∼1%) temperature control of the desorption process for trapped analytes.
View Article and Find Full Text PDFA high-surface area solid phase microextraction (HSA-SPME) sampler is described for dynamic sampling at high air velocities (up to several hundred centimeters per second). The sampling device consists of a thin wire coated with carboxen/polydimethylsiloxane (carboxen/PDMS) material, wound in the annular space between two concentric glass tubes, providing a large trapping surface from which analytes may then be thermally desorbed with little power consumption upon resistive heating of the wire. Desorbed analytes are focused and reconcentrated on a microtrap that is subsequently resistively heated to introduce analytes for GC or GC/MS analysis.
View Article and Find Full Text PDF