An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition.
View Article and Find Full Text PDFPersistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome.
View Article and Find Full Text PDFChronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP.
View Article and Find Full Text PDFLaser capture microdissection (LCM) has allowed gene expression analysis of single cells and enriched cell populations in tissue sections. LCM is a great tool for the study of the molecular mechanisms underlying cell differentiation and the development and progression of various diseases, including glaucoma. Glaucoma, which comprises a family of progressive optic neuropathies, is the most common cause of irreversible blindness worldwide.
View Article and Find Full Text PDFThe platelet-derived growth factor receptor β (PDGFR-β) signaling pathway is a validated and important target for the treatment of certain malignant and nonmalignant pathologies. We previously identified a G-quadruplex-forming nuclease hypersensitive element (NHE) in the human PDGFR-β promoter that putatively forms four overlapping G-quadruplexes. Therefore, we further investigated the structures and biological roles of the G-quadruplexes and i-motifs in the PDGFR-β NHE with the ultimate goal of demonstrating an alternate and effective strategy for molecularly targeting the PDGFR-β pathway.
View Article and Find Full Text PDFUnderstanding the mode of action (MOA) of many natural products can be puzzling with mechanistic clues that seem to lack a common thread. One such puzzle lies in the evaluation of the antitumor properties of the natural product withaferin A (WFA). A variety of seemingly unrelated pathways have been identified to explain its activity, suggesting a lack of selectivity.
View Article and Find Full Text PDFThe global incidence of cancer is on the rise, and within the next decade, the disease is expected to become the leading cause of death worldwide. Forthcoming strategies used to treat cancers focus on the design and implementation of multidrug therapies to target complementary cancer specific pathways. A more direct means by which this multitargeted approach can be achieved is by identifying and targeting interpathway regulatory factors.
View Article and Find Full Text PDFADAM-15, with known zymogen, secretase, and disintegrin activities, is a catalytically active member of the ADAM family normally expressed in early embryonic development and aberrantly expressed in various cancers, including breast, prostate and lung. ADAM-15 promotes extracellular shedding of E-cadherin, a soluble ligand for the HER2/neu receptor, leading to activation, increased motility, and proliferation. Targeted downregulation of both ADAM-15 and HER2/neu function synergistically kills breast cancer cells, but to date there are no therapeutic options for decreasing ADAM-15 function or expression.
View Article and Find Full Text PDFOverexpression of platelet-derived growth factor receptor β (PDGFR-β) has been associated with cancers and vascular and fibrotic disorders. PDGFR-β has become an attractive target for the treatment of cancers and fibrotic disorders. DNA G-quadruplexes formed in the GC-rich nuclease hypersensitivity element of the human PDGFR-β gene promoter have been found to inhibit PDGFR-β transcriptional activity.
View Article and Find Full Text PDFMost transcription of the MYC proto-oncogene initiates in the near upstream promoter, within which lies the nuclease hypersensitive element (NHE) III(1) region containing the CT-element. This dynamic stretch of DNA can form at least three different topologies: single-stranded DNA, double-stranded DNA, or higher order secondary structures that silence transcription. In the current report, we identify the ellipticine analog GQC-05 (NSC338258) as a high affinity, potent, and selective stabilizer of the MYC G-quadruplex (G4).
View Article and Find Full Text PDFOver the last decade or so, secondary non-B-DNA structures such as G-quadruplexes and i-motifs have come into focus as biologically functioning moieties that are potentially involved in telomeric interactions and the control of gene expression. In the present short review, we first describe the structural and dynamic parallels with complex RNA structures, including the importance of sequence and ions in folding, and then we describe the biological consequences of the folded structures. We conclude that there are considerable parallels between secondary and tertiary structures in RNA and DNA from both the folding and the biological perspectives.
View Article and Find Full Text PDF