Publications by authors named "Robert Ungard"

We previously identified that several cancer cell lines known to induce nociception in mouse models release glutamate in vitro. Although the mechanisms of glutamatergic signalling have been characterized primarily in the central nervous system, its importance in the peripheral nervous system has been recognized in various pathologies, including cancer pain. We therefore investigated the effect of glutamate on intracellular electrophysiological characteristics of peripheral sensory neurons in an immunocompetent rat model of cancer-induced pain based on surgical implantation of mammary rat metastasis tumour-1 cells into the distal epiphysis of the right femur.

View Article and Find Full Text PDF

: Cancer pain involves nervous system damage and pathological neurogenesis. Neuropathic pain arises from damage to the nervous system and is driven by ectopic signaling. Both progesterone and pregabalin are neuroprotective in animal models, and there is evidence that both drugs bind to and inhibit voltage-gated calcium channels.

View Article and Find Full Text PDF

Introduction: Pain is a common and debilitating comorbidity of metastatic breast cancer. The hippocampus has been implicated in nociceptive processing, particularly relating to the subjective aspect of pain. Here, a syngeneic mouse model was used to characterize the effects of peripheral tumors on hippocampal microglial activation in relation to cancer-induced pain (CIP).

View Article and Find Full Text PDF

Aggressive breast cancer subtypes utilize system x, a membrane antiporter, to import cystine for glutathione synthesis and maintenance of redox homeostasis, in turn releasing glutamate as a metabolic pro-nociceptive by-product. Metastatic breast cancers establish themselves at distal sites including bone, where changes in extracellular glutamate levels contribute to cancer-induced bone pain. We previously established that stearically blocking system x activity with sulfasalazine delays the onset of nociceptive behaviours and that xCT, the functional antiporter subunit, is positively regulated by signal transducer and activator of transcription 3 (STAT3).

View Article and Find Full Text PDF

Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling molecule glutamate via the oxidative stress-related cystine/glutamate antiporter, system x, which reciprocally imports cystine for synthesis of glutathione and the cystine/cysteine redox cycle.

View Article and Find Full Text PDF

Evidence suggests that there are both nociceptive and neuropathic components of cancer-induced pain. We have observed that changes in intrinsic membrane properties and excitability of normally non-nociceptive Aβ sensory neurons are consistent in rat models of peripheral neuropathic pain and cancer-induced pain. This has prompted a comparative investigation of the intracellular electrophysiological characteristics of sensory neurons and of the ultrastructural morphology of the dorsal horn in rat models of neuropathic pain and cancer-induced pain.

View Article and Find Full Text PDF

Breast cancer cells release the signalling molecule glutamate via the system x antiporter, which is upregulated to exchange extracellular cystine for intracellular glutamate to protect against oxidative stress. Here, we demonstrate that this antiporter is functionally influenced by the actions of the neurotrophin nerve growth factor on its cognate receptor tyrosine kinase, TrkA, and that inhibiting this complex may reduce cancer-induced bone pain via its downstream actions on xCT, the functional subunit of system x. We have characterized the effects of the selective TrkA inhibitor AG879 on system x activity in murine 4T1 and human MDA-MB-231 mammary carcinoma cells, as well as its effects on nociception in our validated immunocompetent mouse model of cancer-induced bone pain, in which BALB/c mice are intrafemorally inoculated with 4T1 murine carcinoma cells.

View Article and Find Full Text PDF

Introduction: Clinical data on cancer-induced bone pain (CIBP) suggest extensive changes in sensory function. In a previous investigation of an animal model of CIBP, we have observed that changes in intrinsic membrane properties and excitability of dorsal root ganglion (DRG) nociceptive neurons correspond to mechanical allodynia and hyperalgesia.

Objectives: To investigate the mechanisms underlying changes in nonnociceptive sensory neurons in this model, we have compared the electrophysiological properties of primary nonnociceptive sensory neurons at <1 and >2 weeks after CIBP model induction with properties in sham control animals.

View Article and Find Full Text PDF

The aim of this work was to synthesize and evaluate [2 + 1] Tc(i) polypyridine complexes containing tetrazines, which along with the corresponding Re(i) complexes, represent a new class of isostructural nuclear and turn-on luminescent probes that can be derivatized and targeted using bioorthogonal chemistry. To this end, [2 + 1] complexes of Tc(i) of the type [Tc(CO)(N^N)(L)] (N^N = bathophenanthroline disulfonate (BPS) or 2,2'-bipyridine (bipy)), where the monodentate ligand (L) was a tetrazine linked to the metal through an imidazole derivative, were prepared. The desired products were obtained in nearly quantitative radiochemical yield by adding [Tc(CO)(N^N)(OH)] to the imidazole-tetrazine ligand and heating at 60 °C for 30 min.

View Article and Find Full Text PDF

Despite the lack of robust evidence of effectiveness, current treatment options for cancer-induced depression (CID) are limited to those developed for non-cancer related depression. Here, anhedonia-like and coping behaviours were assessed in female BALB/c mice inoculated with 4T1 mammary carcinoma cells. The behavioural effects of orally administered sulfasalazine (SSZ), a system x inhibitor, were compared with fluoxetine (FLX).

View Article and Find Full Text PDF

Pharmacologically targeting activated STAT3 and/or STAT5 has been an active area of cancer research. The cystine/glutamate antiporter, system xc-, contributes to redox balance and export of intracellularly produced glutamate in response to up-regulated glutaminolysis in cancer cells. We have previously shown that blocking STAT3/5 using the small molecule inhibitor, SH-4-54, which targets the SH2 domains of both proteins, increases xCT expression, thereby increasing system xc- activity in human breast cancer cells.

View Article and Find Full Text PDF

Background: Bone cancer pain is often severe, yet little is known about mechanisms generating this type of chronic pain. While previous studies have identified functional alterations in peripheral sensory neurons that correlate with bone tumours, none has provided direct evidence correlating behavioural nociceptive responses with properties of sensory neurons in an intact bone cancer model.

Results: In a rat model of prostate cancer-induced bone pain, we confirmed tactile hypersensitivity using the von Frey test.

View Article and Find Full Text PDF

Glutamate is an important signaling molecule in a wide variety of tissues. Aberrant glutamatergic signaling disrupts normal tissue homeostasis and induces several disruptive pathological conditions including pain. Breast cancer cells secrete high levels of glutamate and often metastasize to bone.

View Article and Find Full Text PDF

Cancer in bone is frequently a result of metastases from distant sites, particularly from the breast, lung, and prostate. Pain is a common and often severe pathological feature of cancers in bone, and is a significant impediment to the maintenance of quality of life of patients living with bone metastases. Cancer cell lines have been demonstrated to release significant amounts of the neurotransmitter and cell-signalling molecule l-glutamate via the system xC(-) cystine/glutamate antiporter.

View Article and Find Full Text PDF

Breast cancers are the most common source of metastases to bone, of which cancer-induced bone pain is a frequent pathological feature. Cancer-induced bone pain is a unique pain state with multiple determinants that remains to be well understood and managed. Current standard treatments are limited by dose-dependent side effects that can reduce the quality of life of patients.

View Article and Find Full Text PDF